线性代数 这个矩阵怎么化成行最简形?
3个回答
展开全部
r3+(-1)r1
1 0 1 1 13
0 1 3 1 2 4
0 1 4 0 2 2
r3+(-1)r2
1 0 1 1 13
0 1 3 1 2 4
0 0 1 -1 0 -2
这个就是行阶梯型了,继续化行最简型
r1+(-1)r3,r2+(-3)r3
1 0 0 2 1 5
0 1 0 4 2 10
0 0 1 -1 0 -2
这个就是行最简型了,前3列构成单位矩阵E3
1 0 1 1 13
0 1 3 1 2 4
0 1 4 0 2 2
r3+(-1)r2
1 0 1 1 13
0 1 3 1 2 4
0 0 1 -1 0 -2
这个就是行阶梯型了,继续化行最简型
r1+(-1)r3,r2+(-3)r3
1 0 0 2 1 5
0 1 0 4 2 10
0 0 1 -1 0 -2
这个就是行最简型了,前3列构成单位矩阵E3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
利用矩阵的初等行变换即可
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则 Aα = λα
那么 (A²-A)α = A²α - Aα = λ²α - λα = (λ²-λ)α
所以A²-A的特征值为 λ²-λ,对应的特征向量为α
A²-A的特征值为 0 ,2,6,...,n²-n
【评注】
对于A的多项式,其特征值为对应的特征多项式。
线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询