如何证明直角三角形斜边上的中线等于斜边的一半

 我来答
小葡萄学姐
高粉答主

推荐于2019-09-17 · 专注解答生活问题,让生活更快乐
小葡萄学姐
采纳数:447 获赞数:432705

向TA提问 私信TA
展开全部

取AC的中点E,连接DE。取BC的中点D

∵AD是斜边BC的中线,
∴BD=CD=1/2BC,
∵E是AC的中点,
∴DE是△ABC的中位线,
∴DE//AB(三角形的中位线平行于底边)
∴∠DEC=∠BAC=90°(两直线平行,同位角相等)
∴DE垂直平分AC,
∴AD=CD=1/2BC(垂直平分线上的点到线段两端距离相等)。

sh5215125
高粉答主

推荐于2017-09-18 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5957万
展开全部

直角三角形斜边中线等于斜边的一半。


设在直角三角形ABC中,∠BAC=90°,AD是斜边BC的中线,求证:AD=1/2BC。

【证法1】

延长AD到E,使DE=AD,连接CE。

∵AD是斜边BC的中线,

∴BD=CD,

又∵∠ADB=∠EDC(对顶角相等),

    AD=DE,

∴△ADB≌△EDC(SAS),

∴AB=CE,∠B=∠DCE,

∴AB//CE(内错角相等,两直线平行)

∴∠BAC+∠ACE=180°(两直线平行,同旁内角互补)

∵∠BAC=90°,

∴∠ACE=90°,

∵AB=CE,∠BAC=ECA=90°,AC=CA,

∴△ABC≌△CEA(SAS)

∴BC=AE,

∵AD=DE=1/2AE,

∴AD=1/2BC。

【证法2】

取AC的中点E,连接DE。

∵AD是斜边BC的中线,

∴BD=CD=1/2BC,

∵E是AC的中点,

∴DE是△ABC的中位线,

∴DE//AB(三角形的中位线平行于底边)

∴∠DEC=∠BAC=90°(两直线平行,同位角相等)

∴DE垂直平分AC,

∴AD=CD=1/2BC(垂直平分线上的点到线段两端距离相等)。

【证法3】

延长AD到E,使DE=AD,连接BE、CE。

∵AD是斜边BC的中线,

∴BD=CD,

又∵AD=DE,

∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),

∵∠BAC=90°,

∴四边形ABEC是矩形(有一个角是90°的平行四边形是矩形),

∴AE=BC(矩形对角线相等),

∵AD=DE=1/2AE,

∴AD=1/2BC。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Conqueror
高粉答主

推荐于2019-09-21 · 关注我不会让你失望
知道大有可为答主
回答量:794
采纳率:100%
帮助的人:24.3万
展开全部

方法一:

在三角形ABC中,∠A=90°,AD为BC边上的中线,做AB、AC的中点E、F,连接ED、DF,
因为BE=EA,BD=DC,
所以ED∥AC,
又因为,∠A=90°,
所以∠BED=90°,
∠BED=∠AED=90°,BE=AE,ED=ED(三角形全等:边角边)
所以,△BED≌△AED,
所以BD=AD,
同理AD=CD(△ADF≌△CDF),
所以AD=CD,
所以AD=BD=CD,
所以直角三角形斜边上的中线等于斜边的一半。

方法二:


证明:如图,延长CD到E,使DE=CD,连接AE、BE,
∵CD是斜边AB上的中线,
∴AD=BD,
∴四边形AEBC是平行四边形
∵∠ACB=90°,
∴四边形AEBC是矩形,
∴AD=BD=CD=DE,
∴所以直角三角形斜边上的中线等于斜边的一半。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云南新华电脑学校
2021-10-22 · 百度认证:云南新华电脑职业培训学校官方账号
云南新华电脑学校
云南新华电脑学校是经云南省教育厅批准成立的省(部)级重点计算机专业学校,采用三元化管理模式,教学设备先进,师资雄厚学生毕业即就业,学院引进了电商企业入驻,创建心为电商创业园区,实现在校即创业
向TA提问
展开全部

你的问题我之前也遇到过,希望我的答案可以帮助到你~

证明过程如下:

取AC的中点E,连接DE。取BC的中点D

∵AD是斜边BC的中线

∴BD=CD=1/2BC

∵E是AC的中点

∴DE是△ABC的中位线

∴DE//AB(三角形的中位线平行于底边)

∴∠DEC=∠BAC=90°(两直线平行,同位角相等)

∴DE垂直平分AC

∴AD=CD=1/2BC(垂直平分线上的点到线段两端距离相等)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gongzhen52
2019-12-23 · TA获得超过4.9万个赞
知道顶级答主
回答量:4.8万
采纳率:91%
帮助的人:3694万
展开全部
证法1:
ΔABC是直角三角形,作AB的垂直平分线n交BC于D
∴ AD=BD(线段垂直平分线上的点到这条线段两端点的距离相等)
以DB为半径,D为圆心画弧,与BC在D的另一侧交于C'
∴DC’=AD=BD∴∠BAD=∠ABD ∠C’AD=∠AC’D (等边对等角)
又∵∠BAD+∠ABD+∠C’AD+∠AC’D =180°(三角形内角和定理)
∴∠BAD+∠C’AD=90° 即:∠BAC’=90°
又∵∠BAC=90°
∴∠BAC=∠BAC’
∴C与C’在直线AC上
又∵C与C’在直线BD上,AC与BD相交
∴C与C’重合(也可用垂直公理证明 :假使C与C’不重合 由于CA⊥AB,C’A⊥AB 故过A有CA、C’A两条直线与AB垂直 这就与垂直公理矛盾 ∴假设不成立 ∴C与C’重合)
∴DC=AD=BD∴AD是BC上的中线且AD=BC/2这就是直角三角形斜边上的中线定理
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(18)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式