2个回答
展开全部
26(3) 原式 = lim<n→∞>[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
= lim<n→∞>[1-1/(n+1)] = 1
改后手写题目:
1/(9n^2-3n-2) = 1/[(3n-2)(3n+1) = (1/3)[1/(3n-2) - 1/(3n+1)]
则 lim<n→∞>[1/4+1/28+...+1/(9n^2-3n-2)]
= (1/3) lim<n→∞>[1-1/4+1/4-1/7+...+1/(3n-2) - 1/(3n+1)]
= (1/3) lim<n→∞>[1 - 1/(3n+1)] = 1/3
= lim<n→∞>[1-1/(n+1)] = 1
改后手写题目:
1/(9n^2-3n-2) = 1/[(3n-2)(3n+1) = (1/3)[1/(3n-2) - 1/(3n+1)]
则 lim<n→∞>[1/4+1/28+...+1/(9n^2-3n-2)]
= (1/3) lim<n→∞>[1-1/4+1/4-1/7+...+1/(3n-2) - 1/(3n+1)]
= (1/3) lim<n→∞>[1 - 1/(3n+1)] = 1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询