如图,在三角形ABC中,角a c b等于90度,ac等于bc, d为三角形ABC外一点,且ad等于
如图,在三角形ABC中,角acb等于90度,ac等于bc,d为三角形ABC外一点,且ad等于bd,de垂直ac交ca的延长线于e。求证:de等于ae+bc。...
如图,在三角形ABC中,角a c b等于90度,ac等于bc, d为三角形ABC外一点,且ad等于bd,d e垂直ac交ca的延长线于e。求证:de等于ae+bc。
展开
25个回答
展开全部
连接CD,过B点做BG垂直于DE,角CD于点F.连接AF,如图
,于BC,BG平行于AC,由已知条件,在三角形CBD和三角形CAD中,AC=BC,DC=DC,BD=DA,三角形CBD全等于三角形CAD(SSS),所以有角BDC=CDA,又DB=DA,DF=DF,三角形FBD全等于三角形FAD(SAS)
所以BF=AF,角DCA=BAC=45,角CBF=90,角ABF=BAC=45,在三角形BFA中,BF=AF,三角形是等腰三角形,所以角BFA=90,所以四边形ACBF为正方形。所以BC=AF,同理FGEA是长方形,所以FG=AE,AF=GE,在三角形DFG中,角DGF=90,角DFG=DCA=45,所以三角形DFG是等腰直角三角形,所以DG=FG;线段DE=DG+GE=AE+BC
展开全部
思路:求证DE=AE+BC。由已知AC=BC,所以求出DE=AE+AC即可,由图可知AC+AE=CE,所以证明DE=CE即可。CE与DE组成直角。若想证明直角两边相等,只需证出直角三角形底角为45°即可。
解:连接D,C。由已知可知:AC=BC,AD=BD,CD为公共边,所以△ACD≌△BCD,所以∠ACD=∠BCD=½∠ACB=½×90°=45°。
在Rt△CED中,∠DCE=45°,所以Rt△CED为等腰直角三角形,所以DE=CE=AE+AC=AE+BC
即:DE=AE+BC
解:连接D,C。由已知可知:AC=BC,AD=BD,CD为公共边,所以△ACD≌△BCD,所以∠ACD=∠BCD=½∠ACB=½×90°=45°。
在Rt△CED中,∠DCE=45°,所以Rt△CED为等腰直角三角形,所以DE=CE=AE+AC=AE+BC
即:DE=AE+BC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
对于此题,需要借助辅助线(连接CD)来分析:
而为什么要做这样的辅助线呢? 首先,题目条件AC=BC,角C为直角(推知角CAB=角ABC=45°),且有AD=BD,两个三角形均为等腰三角形。则要是连接CD,势必该条线会过AB中点且垂直于AB。 (假设交AB于点F)
有这样的一条特殊的线存在,便于分析问题。所以不管题目如何,有了这条辅助线可以使问题简单化。
接着分析,由于CF垂直于AB,且F为中点,则角DCA=45°,又角E为直角,则角EDC=45°。则三角形CDE为等腰直角三角形,DE=CE。
又E为CA延长线上一点,则CE=CA+AE。而CA=BC,即CE=AE+BC。
因此,DE=CE=AE+BC。
题目得证。
而为什么要做这样的辅助线呢? 首先,题目条件AC=BC,角C为直角(推知角CAB=角ABC=45°),且有AD=BD,两个三角形均为等腰三角形。则要是连接CD,势必该条线会过AB中点且垂直于AB。 (假设交AB于点F)
有这样的一条特殊的线存在,便于分析问题。所以不管题目如何,有了这条辅助线可以使问题简单化。
接着分析,由于CF垂直于AB,且F为中点,则角DCA=45°,又角E为直角,则角EDC=45°。则三角形CDE为等腰直角三角形,DE=CE。
又E为CA延长线上一点,则CE=CA+AE。而CA=BC,即CE=AE+BC。
因此,DE=CE=AE+BC。
题目得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询