<=>离散数学中这个箭头啥意思, 20
1个回答
2016-05-06
展开全部
A<=>B 命题A 与B 等价关系
离散数学中各种符号大全
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于(??不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
离散数学中各种符号大全
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于(??不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询