碳14测年的测量适用范围及注意点
历史学、人类学和考古学是三个截然不同但密切相关的知识体系,它们借助过去告诉人类现在。历史学家可以知道不同地区有哪些文化曾经兴盛,以及它们衰落的时间。人类学家可以描述人的生理特征、文化、环境和社会关系。考古学家则证明文物的存在或揭开历史或人类学的发现。
没有其他任何科学能像考古学那样,毋庸置疑地丰富了人类的历史。考古学已设法解开了人类很大一部分未留下记录的历史之谜。
和生物科学不一样,研究以前人类生活和活动残留的材料对普通人来说可能并不重要或令人兴奋。但是,考古学旨在了解人类,它是一项超越发掘宝藏、收集信息和测定年龄的崇高的事业。正是了解了昔日文化不再存在的原因后,人类才明白了确保历史不会重演的关键所在。
多年来,如果不是凭借放射性碳定年、树轮年代学、古地磁断代、氟化物定年、光释光测年以及黑曜石水化分析等技术,考古学发现的历史文化信息将永远都不被人所知。放射性碳定年技术的应用已有50年了,它彻底改变了考古学。碳14定年迄今仍是一项强大可靠的、广泛适用的技术,对于考古学家和其他科学家来说极其宝贵。 任何可能影响骨头的碳14含量的含碳物质都被认为是一种污染物。由于考虑到骨头经常接触不同种类的有机物质,因此,它可以说是提交给AMS实验室进行放射性碳定年的污染最严重的样品之一。
常见的污染物有腐殖酸和富里酸,它们是存在于土壤中的由植物或动物组织的微生物降解产生的有机酸。根据文献记载,其他可能污染骨质样品的有机化合物有多酚、多糖、木质素和退化的胶原蛋白。根据挖掘位置的不同,骨骼也可以被石灰石污染。这些污染物被认为是自然的污染物,因为它们与骨骼的接触是自然发生的,而非人为发生的。
人为污染物是人类在收集、保存或包装骨质样品的过程中产生的污染物。当采用动物胶给骨头贴标签时,污染物已经被带入到样品中。这是因为动物胶的化学成分和骨质样品完全一样。那么该样品的加速器质谱仪实验室结果会不准确。
在骨头被挖出后可能会污染骨质样品的其他物质包括杀虫剂、聚醋酸乙烯酯和聚乙二醇(保护化学品)、烟灰,以及纸做的标签或者包装。 将贝类样品提交给加速器质谱实验室进行碳十四测年前需考虑的因素之一是有机体吸收碳时的当地环境。加速器质谱实验室分析员必须知道贝壳类样品可能接触到的污染物种类。
任何接触后可以改变贝壳类样品的含有碳14的含碳物质都是污染物。这意味着,碳酸钙、土壤腐殖物质以及土壤二氧化碳都是潜在的污染物。进行放射性碳测年的贝壳类样品的最常见的污染物是那些由同位素交换和再结晶造成的污染物。
加速器质谱实验室在进行碳14测年之前需进行预处理,以去除所有可能会导致结果不准确的污染物。
有两种和贝壳的放射性碳定年有关的源效应或碳库效应:海洋效应和硬水效应。由于这些效应的存在,必须对贝壳的放射性碳定年结果进行年龄补偿评估。
海洋效应是海洋地表水和深层水缓慢混合的结果。大气层和生物圈之间通过二氧化碳的快速碳交换与大气和海洋之间的碳交换并不完全一样。
大气和地表水之间实现二氧化碳的平衡相对较快。然而,地表水与深水的碳交换速度却非常缓慢,以至于从地表水吸入的二氧化碳的碳14含量和从深水释放出的二氧化碳的碳14含量可能处于放射性碳衰变的不同阶段。研究表明,碳14在大气中的停留时间为6年到10年不等,而碳14在海洋的停留时间则可能长达几千年。
上升流是另外一种可以稀释地表水的放射性碳含量的现象。在世界某些地区,特别是赤道地区,深水向上移动。这种现象通常由信风导致,具有纬度依赖性。海岸线形状、当地的气候和风能,以及海洋底部的地形也是形成上升流的因素。深水的缓慢混合以及上涌意味着海洋的表层水的外观放射性碳年龄与大气相关。
淡水贝壳可能不会受到海洋效应的影响,但它们很容易受到硬水效应的影响,硬水效应是远古碳酸钙溶解产生的钙离子现象。虽然硬水效应的大小与钙离子的数量无直接关系,但是钙离子的存在与碳14的枯竭正好一致。硬水效应可以解释放射性碳定年结果有几百年差异的原因。
硬水效应也会影响沉积在像河口这样含有丰富碳酸盐的淡水区域的海洋贝壳。如果有机体一直生活在碳酸盐丰富的地区(例如白垩地),则蜗牛壳等陆地贝壳也会受到硬水效应的影响。
加速器质谱实验室的分析员必须了解可能影响任何特定贝壳类样品的碳库效应,这样他们就可以知道需要的年龄补偿。加速器质谱实验室通过假设放射性碳含量一直没有变化,以及通过测定在20世纪50年代和60年代的核武器试验之前从同一地点收集到的同一种类的已知年龄的贝壳来量化海洋和硬水库效应。
如果不考虑海洋碳库效应,则无法对陆地和海洋样品进行比较或关联。全球不同海洋的校正因子,参见在线数据库海洋碳库校正数据库 。该数据库获得爱琴海史前史研究所的部分资助。由于海洋环流的复杂性,实际校正随位置的改变而变化。
该数据库还用于诸如CALIB(Stuiver和Reimer,1993)或OxCal(Bronk Ramsey,1995年)等使用2004年海洋校准数据集的放射性碳校正计划。还需值得注意的是,来自深度大于75米的样品不包含在数据库中,因为校正数据集中的海洋模式年龄只对表面混合层有效。 木头或木炭样品被掩埋时周围的含碳材料,以及在其收集和保存过程中使用的含碳材料,可能已经改变了其碳14含量。任何给样品增加碳含量的材料都被认为是污染物。
木头和木炭的自然污染物是指在沉积后的环境中产生的污染物,例如土壤里的腐殖酸和富里酸。它们是由植物和动物组织的微生物降解产生的酸性物质。根的侵入也给木头和木炭样品带来了近现代碳。此外,石灰石也是一种潜在的污染物,这要依发掘现场而定。
木头和木炭样品的人为污染物是人类采集和处理样品时因疏忽或意识淡薄而产生的污染物。人为污染物包括烟灰、头发和纤维、包装材料纸、油、油脂,甚至胶水。
污染对进行加速器质谱放射性碳定年的木头或木炭样品的影响取决于污染物的类型、污染程度,以及样品和污染物的相对年龄。
如果在进行加速器质谱放射性碳定年之前尚未去除石灰岩,则得到的结果会比木头或木炭的实际年龄老得多,这是因为地质成因的石灰岩比任何史前样品的年龄都要大得多。
腐植酸和黄腐酸可附加在木头和木炭的表面,并在称为吸附的过程中进行碳交换。它会让样品的放射性碳年龄变小或变老,而这取决于产生有机酸的生物体的年龄。木炭或木头样品上的根渗透也会导致近现代碳的产生。
一般情况下,远古污染物导致木炭或木头样品比其实际年龄老得多,而近现代碳则让任何样品都比其实际年龄小得多。
为了得到准确的结果,加速器质谱实验室在提交所有木头和木炭样品进行放射性碳定年之前都会对它们先执行预处理。 生物体的时间跨度是指其总生长时间以及与生物圈相互作用的时间。时间跨度会影响样品的放射性碳年龄转换为历年的方式。木头的时间跨度取决于进行放射性碳定年的树木年轮的数目。但是,木炭碎片的时间跨度可能不可以量化。
放射性碳定年的主要假设之一是,该生物体的死亡时间也是其停止与生物圈进行碳交换的时间。如果不是像木头的这种情况,则生物体的放射性碳年龄不从其死亡开始计算。
当对一块木头或木炭进行放射性碳定年时,测定的项目是树木年轮的生长时间。树木随着树轮的添加而生长,一旦被砍伐,这些树轮即停止与生物圈的碳交换。因此,一棵树边材的放射性碳年龄不会与最里面的心材的放射性碳年龄相同,因为最里面的心材比边材年龄要大得多(一般为树木的生活的年份)。
进行碳定年的任何木炭或木头样品会有一个表面年龄,这个年龄可能会导致多达数百年的错误,除非挑选的是短寿命的树种或树枝进行放射性碳定年。
样品的放射性碳年龄可以告诉我们生物体曾经存活的时间,而不是该生物体材料被使用的时间。在对史前古器物进行测量时,必须考虑“旧木”的问题,避免得出错误的结论。
推迟使用和重复使用也是导致“旧木”问题产生的另外两种可能。实际用于测量的木头或者木炭可能之前已经经历了很久的时间才用于燃烧或者使用。此外,质地坚硬的木材可能已保存多年并被重复使用。
这些沉积过程的影响可能不可以计量,但不应该忽视它们,因为碳14测年结果可能会比相应考古内容的真实年代更久远。