求详细过程……
展开全部
∫[0:x](t²-x²)sintdt
=∫[0:x]t²sintdt-∫[0:x]x²sintdt
=(2tsint+2cost-t²·cost)|[0:x]+x²·cost|[0:x]
=2xsinx+2cosx-x²cosx-2+x²cosx-x²
=2xsinx+2cosx-2-x²
d[∫[0:x](t²-x²)sintdt]/dx
=(2xsinx+2cosx-2-x²)'
=2sinx+2xcosx-2sinx-0-2x
=2(cosx-1)x
=∫[0:x]t²sintdt-∫[0:x]x²sintdt
=(2tsint+2cost-t²·cost)|[0:x]+x²·cost|[0:x]
=2xsinx+2cosx-x²cosx-2+x²cosx-x²
=2xsinx+2cosx-2-x²
d[∫[0:x](t²-x²)sintdt]/dx
=(2xsinx+2cosx-2-x²)'
=2sinx+2xcosx-2sinx-0-2x
=2(cosx-1)x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询