展开全部
答案是A。
根据线性方程的叠加原理,原非齐次线性方程的特解是y''+y=x^2+1的特解与y''+y=sinx的特解之和。
因为0不是特征方程的根,所以y''+y=x^2+1的特解设为ax^2+bx+c。
因为±i是特征方程的单根,所以y''+y=sinx的特解设为x(Acosx+Bsinx)。
所以,原非齐次线性方程的特解设为ax^2+bx+c+x(Acosx+Bsinx)。
简介:
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可数顷以确认其解的部分性质。
在无法求得和毕型解析解时,可以利用唤猜数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
第15卷第2期(2010)甘音高旰彳拒VoI.15No.2(20lO)一类常系数非齐次线性微分方程通解和特解的直接解法温大伟陈莉王红芳魏瑾(兰州城市学院数学学院,甘肃兰州730070)摘要:提出了求常系数非齐次线性微分方程通解和特解的新方法...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
微分方程 y''+y'-2y=e^x的特解可设为蠢猜灶:y*=Axe^x;
y*'兆谨=Ae^x+Axe^x=A(1+x)e^x;
y*''=Ae^x+A(1+x)e^x=A(2+x)e^x;
将带扮三个式子代入原式得:A(2+x)e^x+A(1+x)e^x-2Axe^x=e^x
故得 A(2+x)+A(1+x)-2Ax=1
3A=1,∴ A=1/3.
即y*=(1/3)xe^x
第2题只需 A(2+x)e^x+A(1+x)e^x-2Axe^x=3e^x
即A(2+x)+A(1+x)-2Ax=3
解得 A=1.
y*'兆谨=Ae^x+Axe^x=A(1+x)e^x;
y*''=Ae^x+A(1+x)e^x=A(2+x)e^x;
将带扮三个式子代入原式得:A(2+x)e^x+A(1+x)e^x-2Axe^x=e^x
故得 A(2+x)+A(1+x)-2Ax=1
3A=1,∴ A=1/3.
即y*=(1/3)xe^x
第2题只需 A(2+x)e^x+A(1+x)e^x-2Axe^x=3e^x
即A(2+x)+A(1+x)-2Ax=3
解得 A=1.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询