"导数又有几何意义又有物理意义"是什么意思?
1个回答
展开全部
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数既有几何学上的意义,也有物理学上的意义。
导数的几何意义:函数y=fx在x0点的导数f'(x0)的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率。导数的几何意义是该函数曲线在这一点上的切线斜率。
导数的物理意义:导数物理意义随不同物理量而不同,但都是该量的变化的快慢函数,既该量的变化率,是函数的切线。如位移对求导就是速度,速度求导就是加速度,对功求导就是功的改变率等等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询