高中数学题,求解答,要过程 50
展开全部
从图看, f(-4)时取最大值, f(8)为最小值, 8-(-4)=12为半个周期, 周期T = 24, ω = 2π/T =π/12
f(2) = Asin(2π/12 + φ) = Asin(π/6 + φ) = 0
结合φ的范围,得φ = 5π/6
图不是特别清楚, 但x = 0时, 似乎f(0) = 1, 即Asin(5π/6) = 1, 于是A = 2
直线是
πx/2 + (4/5)(5π/6)y - 2π = 0
整理得3x + 4y - 12 = 0
圆心O与其距离为h = |3*0 + 4*0 - 12|/√(3² + 4²) = 12/5
减去半径r = 1, 得P与直线的最小距离: 12/5 - 1 = 7/5
f(2) = Asin(2π/12 + φ) = Asin(π/6 + φ) = 0
结合φ的范围,得φ = 5π/6
图不是特别清楚, 但x = 0时, 似乎f(0) = 1, 即Asin(5π/6) = 1, 于是A = 2
直线是
πx/2 + (4/5)(5π/6)y - 2π = 0
整理得3x + 4y - 12 = 0
圆心O与其距离为h = |3*0 + 4*0 - 12|/√(3² + 4²) = 12/5
减去半径r = 1, 得P与直线的最小距离: 12/5 - 1 = 7/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询