线性代数问题: A的伴随矩阵≠0,至少有一个元素≠0,为什么r(a)≥n-1?
3个回答
引用西域牛仔王的回答:
有定理:A 为 n 阶方阵,A* 是 A 的伴随矩阵,则
1、r(A) = n,则 r(A*) = n
2、r(A) = n-1,则 r(A*) = 1
3、r(A)<n-1,则 r(A*) = 0
既然 A* 有一个元素不为 0,因此 r(A*) 至少为 1,
从上述定理可知 r(A) = n 或 n-1 。
有定理:A 为 n 阶方阵,A* 是 A 的伴随矩阵,则
1、r(A) = n,则 r(A*) = n
2、r(A) = n-1,则 r(A*) = 1
3、r(A)<n-1,则 r(A*) = 0
既然 A* 有一个元素不为 0,因此 r(A*) 至少为 1,
从上述定理可知 r(A) = n 或 n-1 。
展开全部
第二步 大于等于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.
楼主的命题是不严密的,反例:
a
=
[0
1;
有2个0特征值,但是r(a)
=
1,那么n
-
r(a)
=
2
-
1
=
1
<
2。
0
0]
2.
而命题:a)
一个矩阵a的n
-
r(a)小于等于0特征值的个数;b)
一个可对角化矩阵a的n
-
r(a)等于0特征值的个数,则是严密的。
楼主的命题是不严密的,反例:
a
=
[0
1;
有2个0特征值,但是r(a)
=
1,那么n
-
r(a)
=
2
-
1
=
1
<
2。
0
0]
2.
而命题:a)
一个矩阵a的n
-
r(a)小于等于0特征值的个数;b)
一个可对角化矩阵a的n
-
r(a)等于0特征值的个数,则是严密的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询