高等数学,求详细解答
2个回答
展开全部
化为直角坐标是 √(x^2+y^2) = e^[arctan(y/x)],
两边对 x 求导, (x+yy')/√(x^2+y^2) = e^[arctan(y/x)](xy'-y)/(x^2+y^2).
即 (x+yy')√(x^2+y^2) = e^[arctan(y/x)](xy'-y).
即 x+yy'= xy'-y.
y'= (x+y)/(x-y) = (cost+sint)/(cos-sint)
= (1+tant)/(1-tant) = (√3+1)/(√3-1) = 2+√3
x0 = rcost = (√3/2)e^(π/6), y0 = rsint = (1/2)e^(π/6),
切线方程 y = (1/2)e^(π/6) + ( 2+√3)[x - (√3/2)e^(π/6)]
两边对 x 求导, (x+yy')/√(x^2+y^2) = e^[arctan(y/x)](xy'-y)/(x^2+y^2).
即 (x+yy')√(x^2+y^2) = e^[arctan(y/x)](xy'-y).
即 x+yy'= xy'-y.
y'= (x+y)/(x-y) = (cost+sint)/(cos-sint)
= (1+tant)/(1-tant) = (√3+1)/(√3-1) = 2+√3
x0 = rcost = (√3/2)e^(π/6), y0 = rsint = (1/2)e^(π/6),
切线方程 y = (1/2)e^(π/6) + ( 2+√3)[x - (√3/2)e^(π/6)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询