高等数学 用比值审敛法判定下列级数的敛散性 求指教

 我来答
sinerpo
2017-04-17 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5065
采纳率:100%
帮助的人:3301万
展开全部
(5)
令Un=2^n/n!
Un+1=2^(n+1)/(n+1)!
lim n→∞ [2^(n+1)/(n+1)!] / [2^n/n!]
=lim [2^(n+1)n!] / [2^n (n+1)!]
=lim 2/(n+1)
=0
所以该级数收敛。
(6)
令Un=(3n-1)/3^n
Un+1=(3n+2)/3^(n+1)
lim n→∞ [(3n+2)/3^(n+1)] / [(3n-1)/3^n]
=lim [(3n+2) 3^n] / [(3n-1) 3^(n+1)]
=lim (3n+2)/[3(3n-1)]
分子分母同除n
=lim (3+2/n) / [3(3-3/n)]
=3/9
=1/3<1
所以该级数收敛。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式