请帮我解答这题!谢谢
展开全部
∫ (1->√3) (1+2x^3)/[x^3.(1+x^2)] dx
=2∫ (1->√3) dx/(1+x^2) + ∫ (1->√3) dx/[x^3.(1+x^2)]
=2[arctanx]|(1->√3) +∫ (1->√3) dx/[x^3.(1+x^2)]
=π/6 +∫ (1->√3) dx/[x^3.(1+x^2)]
=π/6 +∫ (1->√3) [-1/x +1/x^3 + x/(1+x^2)] dx
=π/6 + [-ln|x| -(1/2)(1/x^2) + (1/2)ln|1+x^2| ] |(1->√3)
=π/6 + { -(1/2)ln3 -1/6 + (1/2)ln10 } - { 0 -1/2 + (1/2)ln2 }
=π/6 + 1/3 +(1/2)ln2
let
1/[x^3.(1+x^2)] ≡ A/x +B/x^2 +C/x^3 + (Dx+E)/(1+x^2)
=>
1 ≡ Ax^2.(1+x^2) +Bx(1+x^2) +C(1+x^2) + (Dx+E)x^3
coef. of constant => C=1
coef. of x =>B=0
coef. of x^2
A+C=0
A=-1
coef. of x^4
A+D=0
D=1
coef. of x^3
B+E =0
E=0
1/[x^3.(1+x^2)] ≡ -1/x +1/x^3 + x/(1+x^2)
=2∫ (1->√3) dx/(1+x^2) + ∫ (1->√3) dx/[x^3.(1+x^2)]
=2[arctanx]|(1->√3) +∫ (1->√3) dx/[x^3.(1+x^2)]
=π/6 +∫ (1->√3) dx/[x^3.(1+x^2)]
=π/6 +∫ (1->√3) [-1/x +1/x^3 + x/(1+x^2)] dx
=π/6 + [-ln|x| -(1/2)(1/x^2) + (1/2)ln|1+x^2| ] |(1->√3)
=π/6 + { -(1/2)ln3 -1/6 + (1/2)ln10 } - { 0 -1/2 + (1/2)ln2 }
=π/6 + 1/3 +(1/2)ln2
let
1/[x^3.(1+x^2)] ≡ A/x +B/x^2 +C/x^3 + (Dx+E)/(1+x^2)
=>
1 ≡ Ax^2.(1+x^2) +Bx(1+x^2) +C(1+x^2) + (Dx+E)x^3
coef. of constant => C=1
coef. of x =>B=0
coef. of x^2
A+C=0
A=-1
coef. of x^4
A+D=0
D=1
coef. of x^3
B+E =0
E=0
1/[x^3.(1+x^2)] ≡ -1/x +1/x^3 + x/(1+x^2)
追问
只是计算积分
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-06-01
展开全部
1,PA²=PB×PCPA=10PB=5PC=10²÷5=20CP-PB=20-5=15=BC因为PBC过圆心所以BC就是直径所以圆的半径是15÷2=7.52,因为PA切圆所以∠PAB=∠C∠P=∠P所以△ABP和△CAP相似所以AB/AC=AP/PC=10/20=1/2AC=2AB因为BC是直径所以△ABC是直角三角形因为BC=15所以AB²+AC²=BC²AB=3×根号5所以sin∠PAB=sin∠ACB=AB/BC=5/根号53
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询