已知x,y,z均为正实数,且满足x2+y2+z2=1,则xy+2yz的最大值为______

 我来答
晴天雨丝丝
2018-03-17 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1.1万
采纳率:88%
帮助的人:2578万
展开全部
x、y∈R+,依均值不等式得
x²+(1/5)y²≥(2/√5)xy,
z²+(4/5)y²≥(4/√5)yz.
两式相加,得
x²+y²+z²≥(2/√5)(xy+2yz),
即xy+2yz≤(√5/2)(x²+y²+z²)=√5/2.
故所求最大值为√5/2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式