矩阵的特征多项式xE-A,把行列式展开,是一个n次多项式,由根系关系可得;特征值的和就等于多项式得根得和,是第n-1次项的系数,是a11+a22+`````+ann。总之,把那个行列式展开,比较系数即可。
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
扩展资料:
矩阵的迹性质
(1)设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。
1、迹是所有对角元素的和
2、迹是所有特征值的和
3、某些时候也利用tr(AB)=tr(BA)来求迹
4、tr(mA+nB)=m tr(A)+n tr(B)
(2)奇异值分解(Singular value decomposition )
奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V
U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。如果A是复矩阵,B中的奇异值仍然是实数。
2021-01-25 广告