3阶方程怎么因式分解

 我来答
晨枫叶轻舞
2019-07-19 · TA获得超过4695个赞
知道答主
回答量:1387
采纳率:35%
帮助的人:44.5万
展开全部

因式分解,直接把三次方程降次.例如:解方程x3-x=0,左边作因式分解,得x(x+1)(x-1)=0,方程的三个根:x1=0,x2=1,x3=-1。因式分解法并不是适合所有的三次方程,只对部分三次方程游泳.大多数的三次方程,先求出它的根,才能作因式分解。

把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。

其它求解三次方程的方法有:通过配方和换元,使三次方程降次为二次方程,进而求解。其另一种换元法、盛金公式解题法等。

扩展资料

求解三次方程的其它方法介绍:

另一种换元法

对于一般形式的三次方程,先用配方和换元,将方程化为x3+px+q=0的特殊型.令x=z-p/3z代入并化简,得:z-p/27z+q=0。再令z=w代入,得:w+p/27w+q=0.这实际上是关于w的二次方程.解出w,再顺次解出z,x。

盛金公式解法

三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法.

参考资料来源:百度百科--三次方程

参考资料来源:百度百科--因式分解

教育小百科达人
2019-04-22 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

因式分解法不是对所有的三次方程都适用,只对一些三次方程适用。对于大多数的三次方程,只有先求出它的根,才能作因式分解。因式分解的解法很简便,直接把三次方程降次。

例如:解方程x^3-x=0,对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0,x2=1,x3=-1。

因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。

学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。

扩展资料:

因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂。

对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

参考资料来源:百度百科——因式分解

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我的行云笔记
高粉答主

2019-07-19 · 爱好读书的三线文艺青年
我的行云笔记
采纳数:59 获赞数:28660

向TA提问 私信TA
展开全部

1、因式分解法

因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用。对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。 

例如:解方程x^3-x=0 对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=—1。

2、一种换元法 

对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。 令x=z—p/3z,代入并化简,得:z^3-p/27z+q=0。再令z=w,代入,得:w^2+p/27w+q=0。这实际上是关于w的二次方程,解出w,再顺次解出z,x。

3、导数求解法 

利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。

如f(x)=x^3+x+1,移项得x^3+x=-1,设y1=x^3+x,y2=-1, y1的导数y1'=3x^2+1,得y1'恒大于0,y1在R上单调递增,所以方程仅一个解,且当y1=-1时x在-1与-2之间,可根据f(x1)f(x2)

扩展资料:

相关结论:基本结论:分解因式与整式乘法为相反。

高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。

因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。

只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。

这看起来或许有点不可思议。比如x⁴+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。

(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)

因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。

标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。

因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。

参考资料:百度百科-因式分解

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
YOU08093631
2018-01-08
知道答主
回答量:47
采纳率:0%
帮助的人:4.1万
展开全部

如图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
未来还在那里吗

2019-12-23 · TA获得超过6625个赞
知道小有建树答主
回答量:6342
采纳率:75%
帮助的人:159万
展开全部
1.
因式分解法 因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用。对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便...
2.
一种换元法 对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。 令x=z—p/3z,代入并化简,得:z^3-p/...
3.
导数求解法 利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式