求下题极限
2个回答
展开全部
lim(x->+∞) (x-1) [ e^(π/2 +arctanx) - e^π ]
=lim(x->+∞) [ e^(π/2 +arctanx) - e^π ] / [1/(x-1) ] (0/0)
分子,分母分别求导
=lim(x->+∞) [ 1/(1+x^2) ]. e^(π/2 +arctanx) / [-1/(x-1)^2 ]
=lim(x->+∞).e^(π/2 +arctanx). lim(x->+∞) -(x-1)^2/(1+x^2)
=e^π . lim(x->+∞) -(x-1)^2/(1+x^2)
=e^π . lim(x->+∞) -(1-1/x)^2/(1/x^2+1)
=-e^π
=lim(x->+∞) [ e^(π/2 +arctanx) - e^π ] / [1/(x-1) ] (0/0)
分子,分母分别求导
=lim(x->+∞) [ 1/(1+x^2) ]. e^(π/2 +arctanx) / [-1/(x-1)^2 ]
=lim(x->+∞).e^(π/2 +arctanx). lim(x->+∞) -(x-1)^2/(1+x^2)
=e^π . lim(x->+∞) -(x-1)^2/(1+x^2)
=e^π . lim(x->+∞) -(1-1/x)^2/(1/x^2+1)
=-e^π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询