高数求定积分一题

高数求定积分一题见图,求解题过程... 高数求定积分一题见图,求解题过程 展开
 我来答
bill8341
高粉答主

2018-01-07 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3536万
展开全部
令x=tant,则有t=arctanx,积分上下限分别变为:t=artan√3=π/3,和 t=arctan1=π/4,而且有:√(1+x^)=√(1+tan^t)=√sec^t=sect;
x^=tan^t,dx=d(tant)=sec^tdt
于是,原积分化为:
∫sec^tdt/(tan^t*sect)
=∫sectdt/tan^t
=∫(1/cost)*dt/(sin^t/cos^t)
=∫cost*dt/sin^t
=∫d(sint)/sin^t
=∫(sint)^(-2) *d(sint)
=-(sint)^(-1)
=-1/sint
将上下限t=π/4和π/3分别代入,可求出:
原定积分=-1/sin(π/3)+1/sin(π/4)=√2 - 2√3/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式