1个回答
展开全部
令x=tant,则有t=arctanx,积分上下限分别变为:t=artan√3=π/3,和 t=arctan1=π/4,而且有:√(1+x^)=√(1+tan^t)=√sec^t=sect;
x^=tan^t,dx=d(tant)=sec^tdt
于是,原积分化为:
∫sec^tdt/(tan^t*sect)
=∫sectdt/tan^t
=∫(1/cost)*dt/(sin^t/cos^t)
=∫cost*dt/sin^t
=∫d(sint)/sin^t
=∫(sint)^(-2) *d(sint)
=-(sint)^(-1)
=-1/sint
将上下限t=π/4和π/3分别代入,可求出:
原定积分=-1/sin(π/3)+1/sin(π/4)=√2 - 2√3/3
x^=tan^t,dx=d(tant)=sec^tdt
于是,原积分化为:
∫sec^tdt/(tan^t*sect)
=∫sectdt/tan^t
=∫(1/cost)*dt/(sin^t/cos^t)
=∫cost*dt/sin^t
=∫d(sint)/sin^t
=∫(sint)^(-2) *d(sint)
=-(sint)^(-1)
=-1/sint
将上下限t=π/4和π/3分别代入,可求出:
原定积分=-1/sin(π/3)+1/sin(π/4)=√2 - 2√3/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询