这个如何做,三角函数方面的
2个回答
展开全部
利用复数比较简单
令Ua=e^(ia)=cosa+isina,U2a=e^(i2a)=(e^(ia))^2=(Ua)^2=cos2a+isin2a
Ua×Ua*=1 (Ua*为Ua共轭复数,Ua*=cosa-isina)
Ua*=1/Ua,
则Ua+Ub+Ur=√2+i√3
1. (Ua+Ub+Ur)*=Ua*+Ub*+Ur*=(√2+i√3)*=√2-i√3
2. (Ua+Ub+Ur)^2=(Ua)^2+(Ub)^2+(Ur)^2+2(UaUb+UaUr+UbUr)
=(Ua)^2+(Ub)^2+(Ur)^2+2UaUbUr(1/Ur+1/Ub+1/Ua)
=(Ua)^2+(Ub)^2+(Ur)^2+2UaUbUr(Ua*+Ub*+Ur*)
=U2a+U2b+U2r+2U(a+b+r)(Ua*+Ub*+Ur*)
=cos2a+isin2a+cos2b+isin2b+cos2r+isin2r+2(cos(a+b+r)+isin(a+b+r))(Ua*+Ub*+Ur*)
=cos2a+coa2b+cos2r+i(sin2a+sin2b+sin2r)+2(cos(a+b+r)+isin(a+b+r))(Ua*+Ub*+Ur*)
=-1+iM+2(N+iP)(√2-i√3) (用字母代替)
=-1+2√2N+2√3P+i(M+2√2P-2√3N)
=(√2+i√3)^2=-1+2i√6 (Ua+Ub+Ur=√2+i√3)
即(实部与实部相等,虚部与虚部相等)
-1+2√2N+2√3P=-1
M+2√2P-2√3N=2√6
又N^2+P^2=1
解
2√2N+2√3P=0
2√2P-2√3N=2√6-M
(2√2N+2√3P)^2=8N^2+8√6NP+12P^2=0
(2√2P-2√3N)^2=8P^2-8√6NP+12N^2=(2√6-M)^2
上式相加代入得
8+12=(2√6-M)^2=20
M=2√6-2√5
结果为15
令Ua=e^(ia)=cosa+isina,U2a=e^(i2a)=(e^(ia))^2=(Ua)^2=cos2a+isin2a
Ua×Ua*=1 (Ua*为Ua共轭复数,Ua*=cosa-isina)
Ua*=1/Ua,
则Ua+Ub+Ur=√2+i√3
1. (Ua+Ub+Ur)*=Ua*+Ub*+Ur*=(√2+i√3)*=√2-i√3
2. (Ua+Ub+Ur)^2=(Ua)^2+(Ub)^2+(Ur)^2+2(UaUb+UaUr+UbUr)
=(Ua)^2+(Ub)^2+(Ur)^2+2UaUbUr(1/Ur+1/Ub+1/Ua)
=(Ua)^2+(Ub)^2+(Ur)^2+2UaUbUr(Ua*+Ub*+Ur*)
=U2a+U2b+U2r+2U(a+b+r)(Ua*+Ub*+Ur*)
=cos2a+isin2a+cos2b+isin2b+cos2r+isin2r+2(cos(a+b+r)+isin(a+b+r))(Ua*+Ub*+Ur*)
=cos2a+coa2b+cos2r+i(sin2a+sin2b+sin2r)+2(cos(a+b+r)+isin(a+b+r))(Ua*+Ub*+Ur*)
=-1+iM+2(N+iP)(√2-i√3) (用字母代替)
=-1+2√2N+2√3P+i(M+2√2P-2√3N)
=(√2+i√3)^2=-1+2i√6 (Ua+Ub+Ur=√2+i√3)
即(实部与实部相等,虚部与虚部相等)
-1+2√2N+2√3P=-1
M+2√2P-2√3N=2√6
又N^2+P^2=1
解
2√2N+2√3P=0
2√2P-2√3N=2√6-M
(2√2N+2√3P)^2=8N^2+8√6NP+12P^2=0
(2√2P-2√3N)^2=8P^2-8√6NP+12N^2=(2√6-M)^2
上式相加代入得
8+12=(2√6-M)^2=20
M=2√6-2√5
结果为15
更多追问追答
追问
谢谢
我做了好长时间也没做出来
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询