空间直线的参数方程如何转换为一般式?

 我来答
寇恋慕Ai
高粉答主

2019-08-14 · 关注我不会让你失望
知道答主
回答量:7
采纳率:0%
帮助的人:2285
展开全部

空间直线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即可为普通方程。

扩展资料:

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。

参考资料来源:百度百科-参数方程

瑞地测控
2024-08-12 广告
在苏州瑞地测控技术有限公司,我们深知频率同步与相位同步的重要性。频率同步确保两个或多个设备的时钟频率变化一致,但相位(即时间点)可保持相对固定差值。而相位同步,即时间同步,要求不仅频率一致,相位也必须完全一致,即时间差恒定为零。相位同步的精... 点击进入详情页
本回答由瑞地测控提供
hjg36043d78ea
推荐于2019-08-17 · TA获得超过3.2万个赞
知道大有可为答主
回答量:1.2万
采纳率:87%
帮助的人:3905万
展开全部
1)化为《对称式》【解出《参数》表达式,联立写出】;

2)把对称式分拆成两个方程;

3)把两个方程都化为平面的《一般型》方程,即完成转换。

如直线 x=3+4t
y=4+5t
z=5+6t

则 t=(x-3)/4=(y-4)/5=(z-5)/6
推出 直线的《对称式》方程为 (x-3)/4=(y-4)/5=(z-5)/6
对称式 分拆成 两个方程 (x-3)/4=(y-4)/5 和 (y-4)/5=(z-5)/6
方程化为《一般型》 5x-15=4y-16 => 5x-4y+1=0
6y-24=5z-25 => 6y-5z+1=0
所以 直线可以化为《交面式》 5x-4y+1=0 ∩ 6y-5z+1=0

【当然,因人的《意愿》不同,至少可以有 三种 不同的形式】
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式