设f具有一阶连续的偏导数是什么意思?

 我来答
PasirRis白沙
高粉答主

2018-03-07 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:2970万
展开全部
这句话的意思是告诉你:
1、对于一元函数来说,在定义域内是处处可导的;
2、对于二元函数来说,在定义域内是处处可微的。
(对于二元函数来说,所有方向可导,才是可微)

就二元函数,说明如下:
A、原来的函数在某一个方向可以求偏导,
偏导的值是连续的,意味着,
原函数的图形,没有出现断裂、折痕、裂缝、
洞隙、重叠、、、等等问题。
否则,导函数不可能连续。
B、这个连续,不表示下一阶可导。
类似于一元函数:
连续函数不一定可导,既要连续,又要可导才行。
C、如果楼主学过梯度gradient、方向导数directional
derivative,就更好理解了:
梯度是矢量,是沿x方向的导函数作为一个分量,
沿y方向的导函数作为一个分量。
然后矢量合成,两个分量连续变化,就变成了所有
方向的方向导数,也就是可微了。

说明:可导、可微的区别,是中国微积分概念。
不是国际微积分概念。
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
晴晴知识加油站
高能答主

2018-05-23 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661211

向TA提问 私信TA
展开全部

意思就是说f的这个偏导数是连续的。

一、偏导数就是在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。

二、在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。

三、在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。

四、求法,当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

五、对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
王者归来黑龙
2018-03-07 · TA获得超过2.3万个赞
知道小有建树答主
回答量:94
采纳率:23%
帮助的人:1.5万
展开全部

一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题一会答题

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
PasirRis白沙
高粉答主

2017-12-28 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:2970万
展开全部
这句话的意思是告诉你:
1、对于一元函数来说,在定义域内是处处可导的;
2、对于二元函数来说,在定义域内是处处可微的。
(对于二元函数来说,所有方向可导,才是可微)

就二元函数,说明如下:
A、原来的函数在某一个方向可以求偏导,
偏导的值是连续的,意味着,
原函数的图形,没有出现断裂、折痕、裂缝、
洞隙、重叠、、、等等问题。
否则,导函数不可能连续。
B、这个连续,不表示下一阶可导。
类似于一元函数:
连续函数不一定可导,既要连续,又要可导才行。
C、如果楼主学过梯度gradient、方向导数directional
derivative,就更好理解了:
梯度是矢量,是沿x方向的导函数作为一个分量,
沿y方向的导函数作为一个分量。
然后矢量合成,两个分量连续变化,就变成了所有
方向的方向导数,也就是可微了。

说明:可导、可微的区别,是中国微积分概念。
不是国际微积分概念。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式