4个回答
展开全部
你把十字相乘法学会这些你就会解了,(x-1)(x-5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x²-6x+5=0
(x-5)(x-1)=0
x1=5
x2=1
(x-5)(x-1)=0
x1=5
x2=1
追问
第二步是怎么来的呢?我好迷
追答
十字相乘法
你要不会的话可以用配方法解
x²-6x+5=0
(x-3)²=3²-5
x-3=±√4
x1=3+2=5
x2=3-2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-09-06
展开全部
解题方法
公式法
x=(-b±√(b^2-4ac))/2a求根公式
十字相乘法
x的平方+(p+q)x+pq=(x+p)(x+q)
解法
因式分解法
因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤
(1)将方程右边化为0;
(2)将方程左边分解为两个一次式的积;
(3)令这两个一次式分别为0,得到两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解.
如
1.解方程:x²+2x+1=0
解:利用完全平方公式因式解得:(x+1)²=0
解得:x=-1
2.解方程x(x+1)-2(x+1)=0
解:利用提公因式法解得:(x-2)(x+1)=0
即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程x²-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式
x²+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+b²+a-b- 2
=ab+a+b²-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
公式法
(可解全部一元二次方程)求根公式
首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b²-4ac<0时 x无实数根(初中)
2.当Δ=b²-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b²-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a
来求得方程的根
配方法
(可解全部一元二次方程)
如:解方程:x²+2x-3=0
解:把常数项移项得:x²+2x=3
等式两边同时加1(构成完全平方式)得:x²+2x+1=4
因式分解得:(x+1)²=4
解得:x1=-3,x2=1
用配方法的小口诀:
二次系数化为一
分开常数未知数
一次系数一半方
两边加上最相当
开方法
(可解部分一元二次方程)
如:x²-24=1
解:x²=25
x=±5
∴x1=5 x2=-5
均值代换法
(可解部分一元二次方程)
ax²+bx+c=0
同时除以a,得到x²+bx/a+c/a=0
设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)
根据x1·x2=c/a
求得m。
再求得x1, x2。
如:x²-70x+825=0
均值为35,设x1=35+m,x2=35-m (m≥0)
x1·x2=825
所以m=20
所以x1=55, x2=15。
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)(韦达定理)
一般式:ax²+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a
公式法
x=(-b±√(b^2-4ac))/2a求根公式
十字相乘法
x的平方+(p+q)x+pq=(x+p)(x+q)
解法
因式分解法
因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤
(1)将方程右边化为0;
(2)将方程左边分解为两个一次式的积;
(3)令这两个一次式分别为0,得到两个一元一次方程;
(4)解这两个一元一次方程,它们的解就是原方程的解.
如
1.解方程:x²+2x+1=0
解:利用完全平方公式因式解得:(x+1)²=0
解得:x=-1
2.解方程x(x+1)-2(x+1)=0
解:利用提公因式法解得:(x-2)(x+1)=0
即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程x²-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式
x²+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+b²+a-b- 2
=ab+a+b²-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
公式法
(可解全部一元二次方程)求根公式
首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b²-4ac<0时 x无实数根(初中)
2.当Δ=b²-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b²-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a
来求得方程的根
配方法
(可解全部一元二次方程)
如:解方程:x²+2x-3=0
解:把常数项移项得:x²+2x=3
等式两边同时加1(构成完全平方式)得:x²+2x+1=4
因式分解得:(x+1)²=4
解得:x1=-3,x2=1
用配方法的小口诀:
二次系数化为一
分开常数未知数
一次系数一半方
两边加上最相当
开方法
(可解部分一元二次方程)
如:x²-24=1
解:x²=25
x=±5
∴x1=5 x2=-5
均值代换法
(可解部分一元二次方程)
ax²+bx+c=0
同时除以a,得到x²+bx/a+c/a=0
设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)
根据x1·x2=c/a
求得m。
再求得x1, x2。
如:x²-70x+825=0
均值为35,设x1=35+m,x2=35-m (m≥0)
x1·x2=825
所以m=20
所以x1=55, x2=15。
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)(韦达定理)
一般式:ax²+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |