3个回答
展开全部
consider
1+2+...+n = n(n+1)/2
an =1/(1+2+...+n)
= 2/[n(n+1)]
=2[ 1/n - 1/(n+1)]
Sn =a1+a2+...+an
= 2[ 1 - 1/(n+1)]
=2n/(n+1)
1/31 + 1/(31+62) + 1/(31+32+93)+1/(31+62+....+2015)
=1/31 + 1/[31x(1+2)]+1/[31x(1+2+3)] +...+ 1/[31x(1+2+...+65)]
=(1/31) [ 1+ 1/(1+2) +1/(1+2+3)+....+1/(1+2+...+65) ]
=(1/31) S65
=(1/31) (130/66)
=65/1023
1+2+...+n = n(n+1)/2
an =1/(1+2+...+n)
= 2/[n(n+1)]
=2[ 1/n - 1/(n+1)]
Sn =a1+a2+...+an
= 2[ 1 - 1/(n+1)]
=2n/(n+1)
1/31 + 1/(31+62) + 1/(31+32+93)+1/(31+62+....+2015)
=1/31 + 1/[31x(1+2)]+1/[31x(1+2+3)] +...+ 1/[31x(1+2+...+65)]
=(1/31) [ 1+ 1/(1+2) +1/(1+2+3)+....+1/(1+2+...+65) ]
=(1/31) S65
=(1/31) (130/66)
=65/1023
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询