高中文科三角函数,有图,求学霸详细解答(过程尽量详细)
1个回答
展开全部
(1)
b(1-2cosA)=2acosB
由正弦定理得sinB(1-2cosA)=2sinAcosB
sinB=2(sinAcosB+cosAsinB)
=2sin(A+B)
=2sinC
由正弦定理得b=2c
(2)
tanA=2√2>0,A为锐角
sinA=2√2/√[1²+(2√2)²]=2√2/3
cosA=1/√[1²+(2√2)²]=1/3
由余弦定理得cosA=(b²+c²-a²)/(2bc)
cosA=1/3,a=1,b=2c代入,整理,得
c²=3/11
S△ABC=½bcsinA
=½·2c·c·(2√2/3)
=c²·(2√2/3)
=(3/11)·(2√2/3)
=2√2/11
△ABC的面积为2√2/11
b(1-2cosA)=2acosB
由正弦定理得sinB(1-2cosA)=2sinAcosB
sinB=2(sinAcosB+cosAsinB)
=2sin(A+B)
=2sinC
由正弦定理得b=2c
(2)
tanA=2√2>0,A为锐角
sinA=2√2/√[1²+(2√2)²]=2√2/3
cosA=1/√[1²+(2√2)²]=1/3
由余弦定理得cosA=(b²+c²-a²)/(2bc)
cosA=1/3,a=1,b=2c代入,整理,得
c²=3/11
S△ABC=½bcsinA
=½·2c·c·(2√2/3)
=c²·(2√2/3)
=(3/11)·(2√2/3)
=2√2/11
△ABC的面积为2√2/11
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询