初中数学教学中如何培养学生的问题意识
展开全部
学习数学知识能够促进学生思维能力的培育和发展,他们发现、分析和解决问题的能力决定着数学知识的学习能力。在初中数学课程教学中,教师为积极响应新课改的号召,重点培养学生的问题意识,为他们营造愉悦轻松的学习环境和课堂氛围,鼓励其敢于提出问题,提出质疑,不仅可帮助学生更好地理解与掌握数学知识,还能提升他们的实际应用能力。
一、深入挖掘教材,引导学生发现问题
教材作为学生学习知识的主要载体,属于纲领性内容,初中数学教材中涉及到的知识和内容十分广泛,包含着丰富的问题资源,是培养学生问题意识的关键资料。因此,在初中数学教学过程中,教师要想培养学生的问题意识,应深入研究教材内容,从中提炼问题,并合理利用教材资料,挖掘其中的隐藏性问题,引导他们主动发现问题,培养其问题意识与问题能力。同时,从初中数学教材内容来看,拥有很多让学生自主发现的问题与内容,像数据、图形、对话等,还有多个问题部分,有试一试、活动思考等。比如,在“有理数的加减法”教学实践中,教材内容主要有练、想、议和做四个部分组成,通过由简入繁的形式设计多个问题,引领学生循序渐进地思考与学习。
而教师也应根据教材内容的设置,从中提炼问题,诸如:利用银行存取钱,设计以下问题:第一次存800元,第二次存300元;第一次存800元,第二次取300元;第一次取800元,第二次取300元;这两次分别存多少钱?让学生初步认识有理数的加减法,分别列出计算式:800+300;800+(-300);(-800)+(-300)。然后,教师可利用教材中的例题设计问题,让学生分别求一个正数与一个负数的和,两个负数的和,两个互为相反数的和,以及0与一个有理数的和,难度逐步提升。
二、更新教学思路,鼓励学生大胆质疑
在传统的初中数学教学活动中,教师往往受到落后教育理念的限制和影响,往往不敢去尝试新的教学思路和模式,难以有效培养学生的问题意识,不能彰显与考虑他们的质疑精神和勇气,严重影响其问题意识的培养,学习效率也难以有效提升。另外,在新课程改革背景下,初中数学教师需及时转变教学理念,更新教学思路,在具体的课堂教学中,应以学生为主体,鼓励他们敢于大胆质疑,提出问题,不断培养与提升其质疑能力,做好引导和点拨工作,促使学生主动猜想和探究问题,问题意识得以有效培养。
例如,在“平行线的判定”教学过程中,教师可借助多媒体教学设备,准备好三角板和直尺等教具,运用启发式的教学方法,在课堂伊始,运用复习导入的方法,让学生回顾平行线的公理及推论,提出问题:如何利用平行线的定义及平行公理的推论来说明两直线平行?在多媒体课件中展示木工师傅使用的拐尺,让学生说明利用拐尺画平行线的原理。之后,教师可让学生针对平行线的几种判定方法,包括:平行线的定义;两条直线都与第三条直线平行;同位角相等;内错角相等;同旁内角互补;在同一平面内,两条直线都与第三条直线垂直。组织学生进行观察、操作、探索和交流,培养他们勇于实践、大胆猜想、质疑和推理的科学态度,进而培养其问题意识。
三、灵活设计问题,避免答案单一标准
初中生的思维往往比较活跃,能够对很多问题提出个人独特的看法与见解,在数学课堂教学中,教师为培养学生的问题意识,需灵活设计一些开放性的问题,避免答案单一标准,积极拓展其思维能力,激发他们的思维能力,促使学生从不同角度观察、发现与分析问题。为此,初中数学教师可针对具体的教学内容,设计一些没有标准和固定答案的问题,为学生留下充足的独立思考空间,由于问题灵活多变,答案具有开放性和不唯一的特点,有利于他们发现与形成问题意识,促使其全方位、多角度地分析与思考问题。
在这里,以“有理数——相反数”教学为例,教师可列举以下几对有理数:8和-8,1/6和-1/6,7.2和-7.2,要求学生在数轴上标出,让他们认真观察和研究问题:上述各对数之间有什么特点?表示这两对数的点在数轴上有什么特点?能够写出其他具有上述特点的数吗?以此训练学生利用数轴应用数形结合的方法思考和解决问题,知道互为相反数的位置关系,掌握求相反数的方法。
这一问题看似简单,却能够让学生从不同角度和方面进行思考,不过教师在设计开放性问题时,应从学生的个人实际情况出发,分析与判断问题。通过开放性问题的设计,学生的思维不受限制,得以充分发散,对问题进行灵活思考,在探究过程中形成问题意识。
一、深入挖掘教材,引导学生发现问题
教材作为学生学习知识的主要载体,属于纲领性内容,初中数学教材中涉及到的知识和内容十分广泛,包含着丰富的问题资源,是培养学生问题意识的关键资料。因此,在初中数学教学过程中,教师要想培养学生的问题意识,应深入研究教材内容,从中提炼问题,并合理利用教材资料,挖掘其中的隐藏性问题,引导他们主动发现问题,培养其问题意识与问题能力。同时,从初中数学教材内容来看,拥有很多让学生自主发现的问题与内容,像数据、图形、对话等,还有多个问题部分,有试一试、活动思考等。比如,在“有理数的加减法”教学实践中,教材内容主要有练、想、议和做四个部分组成,通过由简入繁的形式设计多个问题,引领学生循序渐进地思考与学习。
而教师也应根据教材内容的设置,从中提炼问题,诸如:利用银行存取钱,设计以下问题:第一次存800元,第二次存300元;第一次存800元,第二次取300元;第一次取800元,第二次取300元;这两次分别存多少钱?让学生初步认识有理数的加减法,分别列出计算式:800+300;800+(-300);(-800)+(-300)。然后,教师可利用教材中的例题设计问题,让学生分别求一个正数与一个负数的和,两个负数的和,两个互为相反数的和,以及0与一个有理数的和,难度逐步提升。
二、更新教学思路,鼓励学生大胆质疑
在传统的初中数学教学活动中,教师往往受到落后教育理念的限制和影响,往往不敢去尝试新的教学思路和模式,难以有效培养学生的问题意识,不能彰显与考虑他们的质疑精神和勇气,严重影响其问题意识的培养,学习效率也难以有效提升。另外,在新课程改革背景下,初中数学教师需及时转变教学理念,更新教学思路,在具体的课堂教学中,应以学生为主体,鼓励他们敢于大胆质疑,提出问题,不断培养与提升其质疑能力,做好引导和点拨工作,促使学生主动猜想和探究问题,问题意识得以有效培养。
例如,在“平行线的判定”教学过程中,教师可借助多媒体教学设备,准备好三角板和直尺等教具,运用启发式的教学方法,在课堂伊始,运用复习导入的方法,让学生回顾平行线的公理及推论,提出问题:如何利用平行线的定义及平行公理的推论来说明两直线平行?在多媒体课件中展示木工师傅使用的拐尺,让学生说明利用拐尺画平行线的原理。之后,教师可让学生针对平行线的几种判定方法,包括:平行线的定义;两条直线都与第三条直线平行;同位角相等;内错角相等;同旁内角互补;在同一平面内,两条直线都与第三条直线垂直。组织学生进行观察、操作、探索和交流,培养他们勇于实践、大胆猜想、质疑和推理的科学态度,进而培养其问题意识。
三、灵活设计问题,避免答案单一标准
初中生的思维往往比较活跃,能够对很多问题提出个人独特的看法与见解,在数学课堂教学中,教师为培养学生的问题意识,需灵活设计一些开放性的问题,避免答案单一标准,积极拓展其思维能力,激发他们的思维能力,促使学生从不同角度观察、发现与分析问题。为此,初中数学教师可针对具体的教学内容,设计一些没有标准和固定答案的问题,为学生留下充足的独立思考空间,由于问题灵活多变,答案具有开放性和不唯一的特点,有利于他们发现与形成问题意识,促使其全方位、多角度地分析与思考问题。
在这里,以“有理数——相反数”教学为例,教师可列举以下几对有理数:8和-8,1/6和-1/6,7.2和-7.2,要求学生在数轴上标出,让他们认真观察和研究问题:上述各对数之间有什么特点?表示这两对数的点在数轴上有什么特点?能够写出其他具有上述特点的数吗?以此训练学生利用数轴应用数形结合的方法思考和解决问题,知道互为相反数的位置关系,掌握求相反数的方法。
这一问题看似简单,却能够让学生从不同角度和方面进行思考,不过教师在设计开放性问题时,应从学生的个人实际情况出发,分析与判断问题。通过开放性问题的设计,学生的思维不受限制,得以充分发散,对问题进行灵活思考,在探究过程中形成问题意识。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询