求矩阵A=(-2 1 1 0 2 0 -4 1 3)的特征值和特征向量
特征值为2或-1,特征向量为 η1=(1,0,4)^T,η2=(0,1,-1)^T,η3=(1,0,1)^T。
求特征值,就是要解方程|λE - A| = 0,
展开可得λ1 = λ2 = 2,λ3 = -1,
求特征向量,就是解方程组 (λE-A)X=0,其中 λ=2 或 -1,
用行初等变换,易得:
属于 2 的特征向量 η1=(1,0,4)^T,η2=(0,1,-1)^T,
属于 -1 的特征向量 η3=(1,0,1)^T。
求矩阵的全部特征值和特征向量的方法如下:
系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λn+a1λn-1+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
2021-11-22 广告
求特征值,就是要解方程|λE - A| = 0,
展开可得λ1 = λ2 = 2,λ3 = -1,
求特征向量,就是解方程组 (λE-A)X=0,其中 λ=2 或 -1,
用行初等变换,易得:
属于 2 的特征向量 η1=(1,0,4)^T,η2=(0,1,-1)^T,
属于 -1 的特征向量 η3=(1,0,1)^T。
扩展资料
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
2019-04-30 · 知道合伙人教育行家
展开可得 λ1 = λ2 = 2,λ3 = -1,
求特征向量,就是解方程组 (λE-A)X=0,其中 λ=2 或 -1,
用行初等变换,易得:
属于 2 的特征向量 η1=(1,0,4)^T,η2=(0,1,-1)^T,
属于 -1 的特征向量 η3=(1,0,1)^T。
特征向量构成的矩阵为:
D =
-0.4941 -0.5580 0.6667
-0.4720 0.8161 0.3333
0.7301 0.1500 0.6667
这个是特征值
V =
-1.0000 0 0
0 -1.0000 0
0 0 8.0000
广告 您可能关注的内容 |