求x^2-xy y^2=1这个方程所确定的隐函数的二阶导数
展开全部
x^2-xy+ y^2=1
2x- ( xy' + y) +2y.y' =0
(x-2y)y' = 2x-y
y' = (2x-y)/(x-2y)
y''
= [(x-2y)(2-y') - (2x-y)(1-2y') ]/(x-2y)^2
= [(x-2y)( 2-(2x-y)/(x-2y) ) - (2x-y)( 1-2(2x-y)/(x-2y) ) ]/(x-2y)^2
= [(x-2y)( 2(x-2y)-(2x-y) ) - (2x-y)( (x-2y)-2(2x-y) ) ]/(x-2y)^3
= [(x-2y)( -3y ) - (2x-y)( -3x ) ]/(x-2y)^3
=-3( xy-6y^2 - 2x^2+xy) /(x-2y)^3
=6( x^2-xy+3y^2 ) /(x-2y)^3
2x- ( xy' + y) +2y.y' =0
(x-2y)y' = 2x-y
y' = (2x-y)/(x-2y)
y''
= [(x-2y)(2-y') - (2x-y)(1-2y') ]/(x-2y)^2
= [(x-2y)( 2-(2x-y)/(x-2y) ) - (2x-y)( 1-2(2x-y)/(x-2y) ) ]/(x-2y)^2
= [(x-2y)( 2(x-2y)-(2x-y) ) - (2x-y)( (x-2y)-2(2x-y) ) ]/(x-2y)^3
= [(x-2y)( -3y ) - (2x-y)( -3x ) ]/(x-2y)^3
=-3( xy-6y^2 - 2x^2+xy) /(x-2y)^3
=6( x^2-xy+3y^2 ) /(x-2y)^3
更多追问追答
追问
教材上给出答案是6/(x-2y)^3这是怎么算出来的呢?
追答
x^2-xy+ y^2=1 有没有错?
y''
= [(x-2y)(2-y') - (2x-y)(1-2y') ]/(x-2y)^2
= [(x-2y)( 2-(2x-y)/(x-2y) ) - (2x-y)( 1-2(2x-y)/(x-2y) ) ]/(x-2y)^2
= [(x-2y)( 2(x-2y)-(2x-y) ) - (2x-y)( (x-2y)-2(2x-y) ) ]/(x-2y)^3
= [(x-2y)( -3y ) - (2x-y)( -3x ) ]/(x-2y)^3
=-3( xy-2y^2 - 2x^2+xy) /(x-2y)^3
=6( x^2-xy+y^2 ) /(x-2y)^3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询