1个回答
展开全部
f(x)
= x/(2-x)
=-1 + 2/(2-x) =>f(1) = 1
f'(x) = 2/(2-x)^2 =>f'(1)/1! = 2
f''(x) =2[2!/(2-x)^3] =>f''(1)/2! = 2
f^(n)(x) =2. n!/(2-x)^(n+1) => f^(n)(1)/n! =2
x/(2-x)
=1 +2(x-1) +2(x-1)^2 +....+2(x-1)^n +.....
= x/(2-x)
=-1 + 2/(2-x) =>f(1) = 1
f'(x) = 2/(2-x)^2 =>f'(1)/1! = 2
f''(x) =2[2!/(2-x)^3] =>f''(1)/2! = 2
f^(n)(x) =2. n!/(2-x)^(n+1) => f^(n)(1)/n! =2
x/(2-x)
=1 +2(x-1) +2(x-1)^2 +....+2(x-1)^n +.....
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询