第二十题怎么做呢?

 我来答
tllau38
高粉答主

2018-11-05 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
f(x)
= x^2 + x^k . sin(1/x) ; x≠0
=0 ; x=0
lim(x->0) f(x) = 0
lim(x->0) [x^2 + x^k . sin(1/凳答x)] =0
=> k >0
k>0, x=0 , f(x) 连续

f'(0)
=lim(h->0) [f(h)- f(0) ]/h
=lim(h->0) [h^2 + h^k . sin(1/h) ]/h
=lim(h->0) [h + h^(k-1) . sin(1/h) ]
=0
k-1>喊粗顷0
k>1
ie
k> 1 , x= 0, f(x) 可导
f''(0)
=lim(h->0) [ f'(h)-f'(0) ]/h
=lim(h->1) [2h + k.h^(k-1) . sin(1/h) - h^(k-2) . cos(1/h) ]/h
=lim(h->郑陆1) [2 + k.h^(k-2) . sin(1/h) - h^(k-3) . cos(1/h) ]
=2 (存在)
k-2 >0 and k-3>0
k>3
ie
k>3 , f''(0) = 2
追问
为什么k-2大于0就存在导数呢
追答

f(x)
= x^2 + x^k . sin(1/x) ; x≠0
=0 ; x=0
lim(x->0) f(x) = 0
lim(x->0) [x^2 + x^k . sin(1/x)] =0
=> k >0
k>0, x=0 , f(x) 连续
f'(0)
=lim(h->0) [f(h)- f(0) ]/h
=lim(h->0) [h^2 + h^k . sin(1/h) ]/h
=lim(h->0) [h + h^(k-1) . sin(1/h) ]
=0
k-1>0
k>1
ie
k> 1 , x= 0, f(x) 可导
f''(0)
=lim(h->0) [ f'(h)-f'(0) ]/h
=lim(h->0) [2h + k.h^(k-1) . sin(1/h) - h^(k-2) . cos(1/h) ]/h
=lim(h->0) [2 + k.h^(k-2) . sin(1/h) - h^(k-3) . cos(1/h) ]
=2 (存在)
k-2 >0 and k-3>0
k>3
ie
k>3 , f''(0) = 2

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式