数据分析和数据挖掘的区别是什么?如何做好数据挖掘?
第一,数据汇聚,承上启下
数据中台策略的基本理念是,将所有的数据汇聚到数据中台,以后的每个数据应用(无论是指标和分析类的,还是画像类和大数据类的)统统从数据中台获取数据,如果数据中台没有,那么数据中台就负责把数据找来,如果数据中台找不来,就说明当前真没有这个数据,数据应用也就无从展开。相对而言,数据中台策略中更加强调数据的“全”以及数据中台组织与数据应用组织之间的协作关系,从设计、组织、建设、流程角度保障了模式的落地。
第二,纵观大局,推动全局
数据业务在企业中应当是一个完整业务,是一个亟需提高定位的业务,是企业的战略业务。所以数据中台策略应当对应企业的数据战略,并提供更有力的支撑,而不是仅仅停留在是把数据找到,把数据清洗了,把数据算出来。
第三、技术升级、应用便捷
目前业内比较典型的就是阿里云数加平台,数加平台基本让数据开发者能够像使用传统数据库一样的使用大数据平台了,所有操作方式都是通过可视化界面进行,大部分的开发都是通过SQL语句来实现。数据中台在与数加产品功能对比上不分伯仲,同时又基于私有云大数据应用的特点定制开发了诸多功能以及数据治理模块用以推动企业整体数据化进程。
数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。
数据分析与数据挖掘的思考方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。
我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的假设。
分析框架(假设)+客观问题(数据分析)=结论(主观判断)
而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确
数据分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高需要比较强的编程能力,数学能力和机器学习的能力。如果从结果上来看,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。数据分析是将数据转化为信息的工具,而数据挖掘是将信息转化为认知的工具。
亿信华辰豌豆DM可视化数据挖掘平台深入洞察企业数据规律,充分挖掘数据潜在价值,多维度深度分析更精准。
直观全程的可视化建模
豌豆DM提供全程可视化的建模过程,从训练数据集选择、分析指标字段设置、挖掘算法、参数配置、模型训练、模型评估、对比到模型发布都可以通过零编程、可视化的配置操作,简单、便捷的完成。
这里可以使用亿信华辰一站式数据分析平台ABI,亿信ABI融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。帮助企业发现潜在的信息,挖掘数据的潜在价值。
广告 您可能关注的内容 |