如何快速成为数据分析师?
1个回答
十方融海
2022-03-14
展开全部
2018-10-28 · 国内专业的大数据轻应用自助平台
关注
展开全部
7 周速成互联网数据分析师的秘籍,这是一条捷径,但是是有前提的。不同行业不同公司要求会很不一样,比如说银行做数据分析、建模会要求 SAS/SQL,而互联网行业数据分析只要会 SQL 就可以了。再比如说小公司可能会要求还会 R/Python 什么的,但是稍微中型一点的公司比如说 Facebook 只需要会 SQL 就行了。乍一看有点奇怪,但其实也不奇怪,因为大一点的公司基础设施 (infra) 做得好,很多事情比如说 A/B test 这种都自动化了,不需要专门写代码。接下来的内容都搞照中型以上互联网公司为例。数据分析师需要三个方面的能力:技术(编程),数据分析方法,行业知识。
1. 技术技术方面刚刚说了,就是SQL, 20 个小时,假设文科生,同时对自己要求高一点,最多 80 个小时可以搞定了。按照这个学习 http://www.w3schools.com/sql/default.asp评论里说上面这个链接打不开,所以奉上中文版的:SQL教程_w3cschool重点需要注意的:where / group by / order by / left join / right join / inner join / null / not null / having / distinct / like / union / avg / sum / min / max 学完之后再搜索一下 "SQL hardest questions", 做做练习。当然除了 SQL 之外,Excel 也是要会一点的。不过 Excel 这玩意儿基本多少都会那么些吧,比如说做个图,算算总合、平均之类的,稍微复杂点的数据透视表 (pivot) 就够了。话说我第一份工作的时候连数据透视表都不会,所以说如果你不会这个,那也没关系。如果 SQL 上手比较快,时间充裕,那就练练 Tableau, 主要目的是看看都有什么样的图表,感受一下各自适用什么样的场景。具体怎么做图不是非常重要,真要用的时候搜索一下现学就好了。Tableau 很贵,所以下个试用版的就可以了,然后试用期学点最基本的就可以了。这一共就假设用了 80 个小时吧,那么 8 天过去了(没算错,都要速成了,那还不每天学习 10 个小时)。
2. 数据分析方法经常被问到学习数据分析推荐哪些书,通常答案是我没看过什么数据分析的书,后来仔细想了想,还是有一些的。Case in point. 经典的管理咨询的书,哪个版本的都无所谓了,印象中大概看了一半左右。好像是因为懒,所以没看完,也因为套路都是类似的,看一半也就差不多可以了。 -- 5 天Introduction to Probability Models by Sheldon M. Ross. 应该是出到第 11 版了,但内容应该区别不大,看第一章就可以了,需要搞清楚条件概率,这个概念还是有点重要的。-- 4 天然后再找本统计基础的书(随便哪本教科书都差不多,实在不行的话把 wiki 上统计长条目下的多看几遍也可以),不要太纠结于理论、证明,时刻记住你要能把这些概念解释给不懂统计的人听,解释不清楚的东西你也不用搞清楚。搞清楚几种常见的分布,假设检验,假阳性,假阴性,区别估算,显著性差异,p-value,平均值,中位数,p1/p25/p50/p75/p99,相关性,因果性,幸存者偏差,大数定律,80/20。-- 10 天Thinking, Fast and Slow. 当科普书看看就好,如果看不下去的话那就看《牛奶可乐经济学》。-- 2 天
3. 行业知识很不幸,这一部分就真的没有什么书可以看的了,基本都靠搜索,总结,思考,再搜索,总结,思考。。。如果平时对互联网、科技行业相对比较关注,这一部分会上手很快,了解一些基本概念,试用一些产品,基本上 20 天肯定可以了。比如说这里面总结的资源,都是我入行之前通过搜索引擎总结出来的:求职互联网数据分析,如何准备行业知识? - 邹昕的文章 - 知乎专栏基本上把这些搞清楚,也差不多可以入门了吧。看,加起来正好 49 天,7 周速成班,你要不要试试?数据分析入门并不难,难的是之后的积累才是重点,如何在实际工作、项目中真正发挥数据分析的作用,产生价值。就我个人来说之前在信用卡行业做了两年多,然后转到互联网行业的数据分析,现在又做了半年多,感觉自己除了入门啥都不懂,每到周五下午都很开心,不是因为到周末了,而是因为又一周过去了,而我还没有被走人。
1. 技术技术方面刚刚说了,就是SQL, 20 个小时,假设文科生,同时对自己要求高一点,最多 80 个小时可以搞定了。按照这个学习 http://www.w3schools.com/sql/default.asp评论里说上面这个链接打不开,所以奉上中文版的:SQL教程_w3cschool重点需要注意的:where / group by / order by / left join / right join / inner join / null / not null / having / distinct / like / union / avg / sum / min / max 学完之后再搜索一下 "SQL hardest questions", 做做练习。当然除了 SQL 之外,Excel 也是要会一点的。不过 Excel 这玩意儿基本多少都会那么些吧,比如说做个图,算算总合、平均之类的,稍微复杂点的数据透视表 (pivot) 就够了。话说我第一份工作的时候连数据透视表都不会,所以说如果你不会这个,那也没关系。如果 SQL 上手比较快,时间充裕,那就练练 Tableau, 主要目的是看看都有什么样的图表,感受一下各自适用什么样的场景。具体怎么做图不是非常重要,真要用的时候搜索一下现学就好了。Tableau 很贵,所以下个试用版的就可以了,然后试用期学点最基本的就可以了。这一共就假设用了 80 个小时吧,那么 8 天过去了(没算错,都要速成了,那还不每天学习 10 个小时)。
2. 数据分析方法经常被问到学习数据分析推荐哪些书,通常答案是我没看过什么数据分析的书,后来仔细想了想,还是有一些的。Case in point. 经典的管理咨询的书,哪个版本的都无所谓了,印象中大概看了一半左右。好像是因为懒,所以没看完,也因为套路都是类似的,看一半也就差不多可以了。 -- 5 天Introduction to Probability Models by Sheldon M. Ross. 应该是出到第 11 版了,但内容应该区别不大,看第一章就可以了,需要搞清楚条件概率,这个概念还是有点重要的。-- 4 天然后再找本统计基础的书(随便哪本教科书都差不多,实在不行的话把 wiki 上统计长条目下的多看几遍也可以),不要太纠结于理论、证明,时刻记住你要能把这些概念解释给不懂统计的人听,解释不清楚的东西你也不用搞清楚。搞清楚几种常见的分布,假设检验,假阳性,假阴性,区别估算,显著性差异,p-value,平均值,中位数,p1/p25/p50/p75/p99,相关性,因果性,幸存者偏差,大数定律,80/20。-- 10 天Thinking, Fast and Slow. 当科普书看看就好,如果看不下去的话那就看《牛奶可乐经济学》。-- 2 天
3. 行业知识很不幸,这一部分就真的没有什么书可以看的了,基本都靠搜索,总结,思考,再搜索,总结,思考。。。如果平时对互联网、科技行业相对比较关注,这一部分会上手很快,了解一些基本概念,试用一些产品,基本上 20 天肯定可以了。比如说这里面总结的资源,都是我入行之前通过搜索引擎总结出来的:求职互联网数据分析,如何准备行业知识? - 邹昕的文章 - 知乎专栏基本上把这些搞清楚,也差不多可以入门了吧。看,加起来正好 49 天,7 周速成班,你要不要试试?数据分析入门并不难,难的是之后的积累才是重点,如何在实际工作、项目中真正发挥数据分析的作用,产生价值。就我个人来说之前在信用卡行业做了两年多,然后转到互联网行业的数据分析,现在又做了半年多,感觉自己除了入门啥都不懂,每到周五下午都很开心,不是因为到周末了,而是因为又一周过去了,而我还没有被走人。
十方融海
2022-03-14 广告
2022-03-14 广告
数据分析师一般是计算机或者数学相关专业。想要成为一名数据分析师,可以去十方融海学习。成为一个合格的大数据分析师应该学习和掌握以下技能:1、统计分析:大数定律,抽样推测规律,秩和检验,回归分析,方差分析等。2、可视化辅助工具:Excel,PP...
点击进入详情页
本回答由十方融海提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |