线性代数特征向量和基础解系的区别,一直分不清有啥联系。 10
2个回答
展开全部
对于n阶矩阵A:特征向量是满足Aα=λα的列向量,在此,A的秩表示非零特征值的个数。
基础解系是满足AX=0的列向量,在此,A的秩用来判断基础解系中线性无关的解向量的个数,个数是n-r(A)个。通过对比AX=0和Aα=λα,可见,A的齐次解向量正好是A相应于λ=0的特征向量。
特征值向量对于矩阵而言的,特征向量有对应的特征值,如果Ax=ax,则x就是对应于特征值a的特征向量。而解向量是对于方程组而言的,就是“方程组的解”,是一个意思。
特征值
描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A – λI) v = 0 有非零解v ,因此等价于行列式|A – λI|=0。函数p(λ) = det(A – λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。
所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
以上内容参考:百度百科-特征向量
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询