感性负载并联电容后可以提高电路的功率因数,为什么不采用串联电容的方法提高感性负载的功率因数?
展开全部
在实际应用电路中,多是感性的,线圈用的较多,会降低功率因素的。
我们知道,串联电路中电流处处相同。这个相同,不仅是有效值相同,而且瞬时值也相同,也就是说,任何时刻都相同。
我们又知道,电感和电容中电流与两端电压不同相,电容两端电压落后于电流90度,而电感两端电压超前于电流90度。现在电感和电容中电流相位相同,所以电感两端电压与电容两端电压相位相反,也就是说,任何时刻电容和电感上的电压是互相“抵消”的。
感抗和容抗都与频率有关。必定存在某一频率,在这个频率感抗与容抗相等。既然电感两端电压是感抗乘电流,电容两端电压是容抗乘电流,所以在这个频率下,电感两端电压恰与电容两端电压大小相等,方向相反,完全抵消。这就是串联谐振。
电感两端电压与电容两端电压完全抵消,那么电流不就是无穷大了?实际上电路中总有一些电阻,所以电流不会是无穷大,但电流很大是肯定的。此时串联电路呈纯阻性,即串联电路两端电压与电路中电流同相。
如果频率稍微降低一些怎么样?频率稍微降低一些,容抗变大一点,感抗变小一点,电容两端电压的大小稍微比电感两端电压的大小大一些,不能完全“抵消”,串联电路中电流仍比较大,注意比没有电感时要大,串联电路呈容性,当然不是纯容性,电路中还有一些电阻。从串联电路两端看,施加的电压没有变化,但电流比没有电感单纯是一个电容时大,好像是电容量变大了。可以这样考虑:感抗“抵消”了一部分容抗,使容抗减少,从串联电路两端看,就好像是电容量变大了。
应该注意到,现在容抗随频率的变化非常快,因为现在感抗与容抗互相“抵消”,频率变化一点点,“抵消”的程度就会差很多,也就是从串联电路两端看上去的电容量随频率很快变化,频率降低一点,“看上去”的电容量就会减少很多。
频率继续降低,感抗越来越小,容抗越来越大,直到感抗可以忽略,此时串联电路中电流与只存在一个电容时几乎相同,好像电感不存在。根据串联电路两端电压和其中的电流计算电容量,与没有电感几乎是相同的。频率非常低时,就可以认为是完全相同。
频率从谐振频率稍微升高一些,所有情况变得相反,现在电路呈感性,但感抗比没有电容时小,从串联电路两端看,好像是容抗“抵消”了一部分感抗,使电感量变小了。频率继续升高,容抗越来越小,感抗越来越大,直到容抗可以忽略,根据串联电路两端电压和其中的电流计算电感量,与没有电容时几乎相同。
对于电感和电容的并联电路,分析完全相同,只不过现在是并联,电感和电容两端电压相同,电感中电流和电容中电流相位相反,“抵消”的是电流而不是电压。
总之可以有效地提高有效功率。
关于提高日光灯电路的功率因数
,用并联电容的方法是可以补偿电感镇流器的无功损耗,若在镇流器的前后串联电容,由于电感电容无功电压的抵消,将使日光灯上的电压严重超标,会对日光灯的寿命有极大的影响,严重时有可能发生谐振,电路电流剧烈增大而烧毁线路的。我曾经在一个理发店中看到串联电容接法的日光灯电路,那个镇流器及导线被烧的漆黑。
我们知道,串联电路中电流处处相同。这个相同,不仅是有效值相同,而且瞬时值也相同,也就是说,任何时刻都相同。
我们又知道,电感和电容中电流与两端电压不同相,电容两端电压落后于电流90度,而电感两端电压超前于电流90度。现在电感和电容中电流相位相同,所以电感两端电压与电容两端电压相位相反,也就是说,任何时刻电容和电感上的电压是互相“抵消”的。
感抗和容抗都与频率有关。必定存在某一频率,在这个频率感抗与容抗相等。既然电感两端电压是感抗乘电流,电容两端电压是容抗乘电流,所以在这个频率下,电感两端电压恰与电容两端电压大小相等,方向相反,完全抵消。这就是串联谐振。
电感两端电压与电容两端电压完全抵消,那么电流不就是无穷大了?实际上电路中总有一些电阻,所以电流不会是无穷大,但电流很大是肯定的。此时串联电路呈纯阻性,即串联电路两端电压与电路中电流同相。
如果频率稍微降低一些怎么样?频率稍微降低一些,容抗变大一点,感抗变小一点,电容两端电压的大小稍微比电感两端电压的大小大一些,不能完全“抵消”,串联电路中电流仍比较大,注意比没有电感时要大,串联电路呈容性,当然不是纯容性,电路中还有一些电阻。从串联电路两端看,施加的电压没有变化,但电流比没有电感单纯是一个电容时大,好像是电容量变大了。可以这样考虑:感抗“抵消”了一部分容抗,使容抗减少,从串联电路两端看,就好像是电容量变大了。
应该注意到,现在容抗随频率的变化非常快,因为现在感抗与容抗互相“抵消”,频率变化一点点,“抵消”的程度就会差很多,也就是从串联电路两端看上去的电容量随频率很快变化,频率降低一点,“看上去”的电容量就会减少很多。
频率继续降低,感抗越来越小,容抗越来越大,直到感抗可以忽略,此时串联电路中电流与只存在一个电容时几乎相同,好像电感不存在。根据串联电路两端电压和其中的电流计算电容量,与没有电感几乎是相同的。频率非常低时,就可以认为是完全相同。
频率从谐振频率稍微升高一些,所有情况变得相反,现在电路呈感性,但感抗比没有电容时小,从串联电路两端看,好像是容抗“抵消”了一部分感抗,使电感量变小了。频率继续升高,容抗越来越小,感抗越来越大,直到容抗可以忽略,根据串联电路两端电压和其中的电流计算电感量,与没有电容时几乎相同。
对于电感和电容的并联电路,分析完全相同,只不过现在是并联,电感和电容两端电压相同,电感中电流和电容中电流相位相反,“抵消”的是电流而不是电压。
总之可以有效地提高有效功率。
关于提高日光灯电路的功率因数
,用并联电容的方法是可以补偿电感镇流器的无功损耗,若在镇流器的前后串联电容,由于电感电容无功电压的抵消,将使日光灯上的电压严重超标,会对日光灯的寿命有极大的影响,严重时有可能发生谐振,电路电流剧烈增大而烧毁线路的。我曾经在一个理发店中看到串联电容接法的日光灯电路,那个镇流器及导线被烧的漆黑。
展开全部
采用串联的方式,该电感分担的电压势必会减少,电压降低就不可能提高他的功率特性了。
1.功率分为无功和有功,无功又分为容性和感性两种,这两并不消耗能量,一台变电器,我们希望他所有的负荷都用在有功上面,这就出现了功率因数的概念。
2.通常电气设备都以感性线圈为主,所以需要补偿电容,若感性无功=容性无功,则发生谐振,所以功率因数一般就定在0.95左右。
3.采用并联的方法是因为并联回路的特性——电压相等,这样原有用电设备的用电状况不会发生改变,电流在L和C之间振荡。
4.若串联连接,电流也在L和C之间振荡,我们把L和C看作一个整体,则这个整体两端的电压没变,便L和C两端的电压都会升高。
5.将电容串联到电路中,虽然可以提高电路的功率因数,但是对于感性负载来说,两端的电压和流过的电流都变化了,原有的工作状态改变了,就失去了提高功率因数的意义。
1.功率分为无功和有功,无功又分为容性和感性两种,这两并不消耗能量,一台变电器,我们希望他所有的负荷都用在有功上面,这就出现了功率因数的概念。
2.通常电气设备都以感性线圈为主,所以需要补偿电容,若感性无功=容性无功,则发生谐振,所以功率因数一般就定在0.95左右。
3.采用并联的方法是因为并联回路的特性——电压相等,这样原有用电设备的用电状况不会发生改变,电流在L和C之间振荡。
4.若串联连接,电流也在L和C之间振荡,我们把L和C看作一个整体,则这个整体两端的电压没变,便L和C两端的电压都会升高。
5.将电容串联到电路中,虽然可以提高电路的功率因数,但是对于感性负载来说,两端的电压和流过的电流都变化了,原有的工作状态改变了,就失去了提高功率因数的意义。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询