已知函数f(n)=sin[(nπ)/6],n∈Z,则f(1)+f(2)+f(3)+···+f(102)=

 我来答
淦秀英权婵
2020-01-02 · TA获得超过3.8万个赞
知道小有建树答主
回答量:1.4万
采纳率:29%
帮助的人:820万
展开全部
这题考察你对函数周期性的理解
一个正弦函数sinx的最小周期是2π,f(n)=sin[(nπ)/6]的最小周期就是12,(nπ)/6=2π、n=12;
f(1)+f(2)+f(3)+···+f(12)=0,
可以验证一下
f(1)=1/2,f(2)=√3/2,f(3)=1,f(4)=√3/2,f(5)=1/2,f(6)=0
f(7)=-1/2,f(8)=-√3/2,f(9)=-1,f(10)=-√3/2,f(11)=-1/2,f(12)=0
所以102/12=8余6,f(1)+···+f(96)=0,最后只剩下f(97)+f(98)+f(99)+f(100)+f(101)+f(102)
f(97)=f(96+1)=f(1),f(98)=f(96+2)=f(2),···,f(102)=f(96+6)=f(6)
最后
f(1)+f(2)+f(3)+…+f(102)=f(97)+f(98)+f(99)+f(100)+f(101)+f(102)=f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=2+√3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式