如图一,等腰△ABC,AB=AC,∠A<60°,D为△ABC外部一点,在AB的右侧作∠ABD=60°,且∠ADB=∠ACB

 我来答
曲海冬邝亭
2020-02-02 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:884万
展开全部
解:(a)AB=CD+BD,
证明:延长BD至H,使BH=AB,
∵∠ABD=60°,
∴△ABH为等边三角形,
∴∠H=60°,AH=AB,
∵AB=AC,
∴∠ABC=∠ACB,AC=AH,
∵∠ADB=∠ACB,∠ABC=∠ADB,
∵∠AOB=∠CAD+∠ADB=∠CBD+∠ACB
又∵∠ADB=∠ACB,
∴∠CBD=∠CAD,
∵∠ABC=∠ABD+∠CBD=60°+∠CBD,
又∵∠ADB=∠H+∠HAD=60°+∠HAD
∴∠CBD=∠HAD
∴∠CAD=∠HAD,
在△ACD和△AHD中
AH=AC
∠HAD=∠CAD
AD=AD
∴△ACD≌△AHD,
∴DC=DH,
∴AB=CD+BD.
(2)解:不成立,AB=BD-CD,
理由是:在BD上取一点H,使BH=AB,
同理可证∠CBD=∠CAD=60°-∠ABC,∠DAH=60°-∠ADB,
同理可证△ACD≌△AHD,
∴DC=DH,
即AB=BD-CD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式