根号下1+x 的原函数怎么求
3个回答
展开全部
对√(1+x^2)求积分
作三角代换,令x=tant
则∫√(1+x²)dx
=secttant+ln│sect+tant│--∫(sect)^3dt
所以∫(sect)^3dx=1/2(secttant+ln│sect+tant│)+C
从而∫√(1+x^2) dx
=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
如图所示
拓展资料:
原函数
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
资料参考:原函数百度百科
展开全部
就是(x+1)^(1/2)
所以是幂函数求积分
∫(x+1)^(1/2)dx
=∫(x+1)^(1/2)d(x+1)
=(x+1)^(1/2+1)/(1/2+1)+C
=(x+1)^(3/2)/(3/2)+C
=2(x+1)√(x+1)/3+C
根号里如果如果不是1次的,那就要看具体情况了
所以是幂函数求积分
∫(x+1)^(1/2)dx
=∫(x+1)^(1/2)d(x+1)
=(x+1)^(1/2+1)/(1/2+1)+C
=(x+1)^(3/2)/(3/2)+C
=2(x+1)√(x+1)/3+C
根号里如果如果不是1次的,那就要看具体情况了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
√(1+x)的原函数为2/3*(1+x)^(3/2)+C。具体解答过程如下。
解:令f(x)=√(1+x),F(x)为f(x)的原函数。
那么F(x)=∫√(1+x)dx
=∫√(1+x)d(1+x)
=2/3*(1+x)^(3/2)+C
即f(x)=√(1+x)的原函数为F(x)=2/3*(1+x)^(3/2)+C。
扩展资料:
1、不定积分的性质
(1)函数的和的不定积分等于各个函数的不定积分的和。即,
∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即,
∫k*f(x)dx=k∫f(x)dx
2、不定积分的公式
∫1/(x^2)dx=-1/x+C、∫adx=ax+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C
参考资料来源:搜狗百科-不定积分
解:令f(x)=√(1+x),F(x)为f(x)的原函数。
那么F(x)=∫√(1+x)dx
=∫√(1+x)d(1+x)
=2/3*(1+x)^(3/2)+C
即f(x)=√(1+x)的原函数为F(x)=2/3*(1+x)^(3/2)+C。
扩展资料:
1、不定积分的性质
(1)函数的和的不定积分等于各个函数的不定积分的和。即,
∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即,
∫k*f(x)dx=k∫f(x)dx
2、不定积分的公式
∫1/(x^2)dx=-1/x+C、∫adx=ax+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C
参考资料来源:搜狗百科-不定积分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询