如图,已知正方形OABC在直角坐标系xOy中,点A、C分别在x轴、y轴的正半轴上,点O在
展开全部
解:(1)证明:
∵四边形OABC为正方形,∴OC=OA.
∵三角板OEF是等腰直角三角形,∴OE1=OF1.
又三角板OEF绕O点逆时针旋转至OE1F1的位置时,∠AOE1=∠COF1,
∴△OAE1≌△OCF1.
(2)存在.
∵OE⊥OF,
∴过点F与OE平行的直线有且只有一条,并与OF垂直,
当三角板OEF绕O点逆时针旋转一周时,
则点F在以O为圆心,以OF为半径的圆上.
∴过点F与OF垂直的直线必是圆O的切线.
又点C是圆O外一点,过点C与圆O相切的直线有且只有2条,不妨设为CF1和CF2,
此时,E点分别在E1点和E2点,满足CF1∥OE1,CF2∥OE2.
当切点F1在第二象限时,点E1在第一象限.
在直角三角形CF1O中,OC=4,OF1=2,
cos∠COF1=
1/2
,
∴∠COF1=60°,∴∠AOE1=60°.
∴点E1的横坐标为:xE1=2cos60°=1,
点E1的纵坐标为:yE1=2sin60°=
根号3,
∴点E1的坐标为(1,根号3
);
当切点F2在第一象限时,点E2在第四象限.
同理可求:点E2的坐标为(1,-
根号3).
综上所述,三角板OEF绕O点逆时针旋转一周,存在两个位置,使得OE∥CF,此时点E的坐标为E1(1,根号3
)或E2(1,-根号3
).
∵四边形OABC为正方形,∴OC=OA.
∵三角板OEF是等腰直角三角形,∴OE1=OF1.
又三角板OEF绕O点逆时针旋转至OE1F1的位置时,∠AOE1=∠COF1,
∴△OAE1≌△OCF1.
(2)存在.
∵OE⊥OF,
∴过点F与OE平行的直线有且只有一条,并与OF垂直,
当三角板OEF绕O点逆时针旋转一周时,
则点F在以O为圆心,以OF为半径的圆上.
∴过点F与OF垂直的直线必是圆O的切线.
又点C是圆O外一点,过点C与圆O相切的直线有且只有2条,不妨设为CF1和CF2,
此时,E点分别在E1点和E2点,满足CF1∥OE1,CF2∥OE2.
当切点F1在第二象限时,点E1在第一象限.
在直角三角形CF1O中,OC=4,OF1=2,
cos∠COF1=
1/2
,
∴∠COF1=60°,∴∠AOE1=60°.
∴点E1的横坐标为:xE1=2cos60°=1,
点E1的纵坐标为:yE1=2sin60°=
根号3,
∴点E1的坐标为(1,根号3
);
当切点F2在第一象限时,点E2在第四象限.
同理可求:点E2的坐标为(1,-
根号3).
综上所述,三角板OEF绕O点逆时针旋转一周,存在两个位置,使得OE∥CF,此时点E的坐标为E1(1,根号3
)或E2(1,-根号3
).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询