展开全部
第一小题,y'=-2x[sin(2tan(x^2))]^(-2)*(sec(x^2))^2,这是一个挺复杂的复合函数求导
第二小题:2xe^(-3y)-3y'*x^2*e^(-3y)+3y'y^2=0
y'=2xe^(-3y)/[3x^2*e^(-3y)-3y^2];
第三小题:y'=(2-x)^(1/x)*(-1/(2x-x^2)-ln(2-x)/x^2);
第四小题:y'=ln(x^2+1)/(2根号x).
第二小题:2xe^(-3y)-3y'*x^2*e^(-3y)+3y'y^2=0
y'=2xe^(-3y)/[3x^2*e^(-3y)-3y^2];
第三小题:y'=(2-x)^(1/x)*(-1/(2x-x^2)-ln(2-x)/x^2);
第四小题:y'=ln(x^2+1)/(2根号x).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)y=arcsin[tan(x^2)]
dy/dx={1/√{1-[tan(x^2)]^2}}*[tan(x^2)]'
={1/√{1-[tan(x^2)]^2}}*[sec(x^2)]^2*(x^2)'
={1/√{1-[tan(x^2)]^2}}*[sec(x^2)]^2*(2x)
={2x[sec(x^2)]^2}/√{1-[tan(x^2)]^2}
(2)(x^2)*e^(-3y)+y^3=6
2x*e^(-3y)+(x^2)*e^(-3y)*(-3dy/dx)+(3y^2)*dy/dx=0
2x-(3x^2)*dy/dx+(3y^2)*e^(3y)*dy/dx=0
[(3y^2)*e^(3y)-3x^2]*dy/dx=-2x
dy/dx=(2x)/[3x^2-(3y^2)*e^(3y)]
(3)y=(2-x)^(1/x)
lny=(1/x)*ln(2-x)
(1/y)*dy/dx=(-1/x^2)*ln(2-x)+(1/x)*[1/(x-2)]
dy/dx=y*[1/(x^2-2x)-ln(2-x)/(x^2)]
=[(2-x)^(1/x)]*[1/(x^2-2x)-ln(2-x)/(x^2)]
(4)y=∫(0,√x) ln(t^4+1)dt
dy/dx=(√x)'*ln[(√x)^4+1]
=(1/2√x)*ln(x^2+1)
=ln(x^2+1)/(2√x)
dy/dx={1/√{1-[tan(x^2)]^2}}*[tan(x^2)]'
={1/√{1-[tan(x^2)]^2}}*[sec(x^2)]^2*(x^2)'
={1/√{1-[tan(x^2)]^2}}*[sec(x^2)]^2*(2x)
={2x[sec(x^2)]^2}/√{1-[tan(x^2)]^2}
(2)(x^2)*e^(-3y)+y^3=6
2x*e^(-3y)+(x^2)*e^(-3y)*(-3dy/dx)+(3y^2)*dy/dx=0
2x-(3x^2)*dy/dx+(3y^2)*e^(3y)*dy/dx=0
[(3y^2)*e^(3y)-3x^2]*dy/dx=-2x
dy/dx=(2x)/[3x^2-(3y^2)*e^(3y)]
(3)y=(2-x)^(1/x)
lny=(1/x)*ln(2-x)
(1/y)*dy/dx=(-1/x^2)*ln(2-x)+(1/x)*[1/(x-2)]
dy/dx=y*[1/(x^2-2x)-ln(2-x)/(x^2)]
=[(2-x)^(1/x)]*[1/(x^2-2x)-ln(2-x)/(x^2)]
(4)y=∫(0,√x) ln(t^4+1)dt
dy/dx=(√x)'*ln[(√x)^4+1]
=(1/2√x)*ln(x^2+1)
=ln(x^2+1)/(2√x)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询