线性方程组中,主未知量 和自由未知量分别指什么?
1个回答
展开全部
自由未知量的一般选取方法:
先将系数矩阵经初等行变换化成行简化梯矩阵
非零行的首非零元所在列对应的是约束未知量
其余未知量即为自由未知量
由上面的选取方法可知:
约束未知量所在列即构成a的列向量组的一个极大无关组
自由未知量所在列可由此极大无关组唯一线性表示
这样就能保证:对于自由未知量任取一组数都能唯一解出约束未知量
把方程组表示成向量形式就更清楚了:
比如,
α1,...,αr
是
α1,...,αn
的一个极大无关组
则
xr+1,...,xn
是自由未知量
方程写成
x1α1+...+xrαr
=
-xr+1αr+1+...-xnαn
对xr+1,...,xn的任一组取值,
线性组合-xr+1αr+1+...-xnαn可由α1,...,αr唯一线性表示
即可唯一确定约束未知量
x1,...,xr.
例:
齐次线性方程组
x1-x2+x3-x4=0
x1-x2-x3+x4=0
x1-x2-2x3+2x4=0
分析:
系数矩阵
a
=
1
-1
1
-1
1
-1
-1
1
1
-1
-2
2
r2-r1,r3-r1
1
-1
1
-1
0
0
-2
2
0
0
-3
3
r2*(-1/2),r3+3r2,r1-r2
1
-1
0
0
0
0
1
-1
0
0
0
0
根据一般选取方法,
x1,x3
是约束未知量,
x2,x4
是自由未知量
同解方程组为
x1=x2
x3=x4
对
x2,x4
任取一组数,
可唯一解出
x1,x3.
那么,
能不能取x1,x4作为自由未知量呢?
按上面提到的原则是可以的
因为第2,3列也是一个极大无关组
已答,满意请采纳^_^
这样可以么?
先将系数矩阵经初等行变换化成行简化梯矩阵
非零行的首非零元所在列对应的是约束未知量
其余未知量即为自由未知量
由上面的选取方法可知:
约束未知量所在列即构成a的列向量组的一个极大无关组
自由未知量所在列可由此极大无关组唯一线性表示
这样就能保证:对于自由未知量任取一组数都能唯一解出约束未知量
把方程组表示成向量形式就更清楚了:
比如,
α1,...,αr
是
α1,...,αn
的一个极大无关组
则
xr+1,...,xn
是自由未知量
方程写成
x1α1+...+xrαr
=
-xr+1αr+1+...-xnαn
对xr+1,...,xn的任一组取值,
线性组合-xr+1αr+1+...-xnαn可由α1,...,αr唯一线性表示
即可唯一确定约束未知量
x1,...,xr.
例:
齐次线性方程组
x1-x2+x3-x4=0
x1-x2-x3+x4=0
x1-x2-2x3+2x4=0
分析:
系数矩阵
a
=
1
-1
1
-1
1
-1
-1
1
1
-1
-2
2
r2-r1,r3-r1
1
-1
1
-1
0
0
-2
2
0
0
-3
3
r2*(-1/2),r3+3r2,r1-r2
1
-1
0
0
0
0
1
-1
0
0
0
0
根据一般选取方法,
x1,x3
是约束未知量,
x2,x4
是自由未知量
同解方程组为
x1=x2
x3=x4
对
x2,x4
任取一组数,
可唯一解出
x1,x3.
那么,
能不能取x1,x4作为自由未知量呢?
按上面提到的原则是可以的
因为第2,3列也是一个极大无关组
已答,满意请采纳^_^
这样可以么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询