判断函数f(x)=lg((√x²+1)-x)的奇偶性

 我来答
督青芬雀汝
2019-07-19 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:758万
展开全部
你好这个函数是奇函数
证明首先求函数的定义域由
√(x^2+1)-x>0
即x属于R
原因
f(-x)=lg√[(-x)^2+1]-(-x)
=lg√((-x)^2+1)+x
=lg[√(x^2+1)+x]*1
=lg[√(x^2+1)+x]*[√(x^2+1)-x]/[√(x^2+1)-x]
=lg[(√x^2+1)²-x²]/[√((x^2+1)-x]
=lg1/[√(x^2+1)-x]
=lg[√(x^2+1)-x]^(-1)
=-lg[√(x^2+1)-x]
=-f(x)
即f(-x)=-f(x)
故函数是奇函数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式