Sin(A+B)这个公式等于什么
展开全部
两角和的正弦与余弦公式:
(1)sin(α+β)=sinαcosβ+cosαsinβ;
(2)cos(α+β)=cosαcosβ-sinαsinβ;
sin(α+β)=cos(90°-α-β)
=cos[(90°-α)+(-β)]
=cos(90°-α)cos(-β)-
sin(90°-α)sin(-β)
=sinαcosβ+cosαsinβ
两角和正切公式的推导过程
tan(A+B)=sin(A+B)/cos(A+B)
=(sinAcosB+cosAsinB)/
(cosAcosB-sinAsinB)
分子分母分别除以cosAcosB(cosA不等于0,cosB不等于0)
则
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
两角和的正弦与余弦公式:
(1)
sin(α+β)=sinαcosβ+cosαsinβ;
(2)
cos(α+β)=cosαcosβ-sinαsinβ;
教材的思路是在直角坐标系的单位圆中,
根据两点间的距离公式推导:
cos(α+β)=cosαcosβ-sinαsinβ;
再用诱导公式证明:
sin(α+β)=sinαcosβ+cosαsinβ;
如图所示:∠AOD=α,∠BOD=-β,∠AOC=β,∠DOC=β+α。
则B(cosβ,-sinβ);D(1,0);A(cosα,sinα);C[cos(α+β),sin(α+β)]。
∵
OA=OB=OC=OD=1
∴
CD=AB。
∵
CD2=[cos(α+β)-1]
2+[
sin(α+β)-0]
2;
=cos2(α+β)-
2cos(α+β)+1
+
sin2(α+β);
=2-2
cos(α+β)。
AB2=(cosα-cosβ)2+
(sinα+sinβ)2;
=cos2α-2cosαcosβ+cos2β+sin2α+2sinαsinβ+
sin2β;
=2-2[cosαcosβ-
sinαsinβ]。
∴
2-2
cos(α+β)=2-2[cosαcosβ-
sinαsinβ]。
∴
cos(α+β)=cosαcosβ-
sinαsinβ
∴
sin(α+β)=
cos(90°-α-β)
=cos[(90°-α)+(-β)]
=cos(90°-α)cos(-β)-
sin(90°-α)sin(-β)
=sinαcosβ+cosαsinβ
(1)
sin(α+β)=sinαcosβ+cosαsinβ;
(2)
cos(α+β)=cosαcosβ-sinαsinβ;
教材的思路是在直角坐标系的单位圆中,
根据两点间的距离公式推导:
cos(α+β)=cosαcosβ-sinαsinβ;
再用诱导公式证明:
sin(α+β)=sinαcosβ+cosαsinβ;
如图所示:∠AOD=α,∠BOD=-β,∠AOC=β,∠DOC=β+α。
则B(cosβ,-sinβ);D(1,0);A(cosα,sinα);C[cos(α+β),sin(α+β)]。
∵
OA=OB=OC=OD=1
∴
CD=AB。
∵
CD2=[cos(α+β)-1]
2+[
sin(α+β)-0]
2;
=cos2(α+β)-
2cos(α+β)+1
+
sin2(α+β);
=2-2
cos(α+β)。
AB2=(cosα-cosβ)2+
(sinα+sinβ)2;
=cos2α-2cosαcosβ+cos2β+sin2α+2sinαsinβ+
sin2β;
=2-2[cosαcosβ-
sinαsinβ]。
∴
2-2
cos(α+β)=2-2[cosαcosβ-
sinαsinβ]。
∴
cos(α+β)=cosαcosβ-
sinαsinβ
∴
sin(α+β)=
cos(90°-α-β)
=cos[(90°-α)+(-β)]
=cos(90°-α)cos(-β)-
sin(90°-α)sin(-β)
=sinαcosβ+cosαsinβ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询