求微分方程y'+y=e-x次方的通解
展开全部
方法一、y'+y=e^{-x}即:e^{x}*y'+e^{x}*y=1即:e^{x}*y'+(e^{x})'*y=1即:(e^{x}*y)'=1积分得:e^{x}*y=x+A即:y=(x+A)*e^{-x}
方法二、令y=u*e^{-x}为原方程的解,则:u'*e^{-x}-u*e^{-x}+u*e^{-x}=e^{-x}即:u'=1,u=x+A从而得:y=(x+A)*e^{-x}
方法二、令y=u*e^{-x}为原方程的解,则:u'*e^{-x}-u*e^{-x}+u*e^{-x}=e^{-x}即:u'=1,u=x+A从而得:y=(x+A)*e^{-x}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵y'=e^(x+y)
==>y'=e^x*e^y
==>e^(-y)dy=e^xdx
==>e^(-y)=c-e^x
(c是积分常数)
==>y=-ln|c-e^x|
∴原微分方程的通解是
y=-ln|c-e^x|
(c是积分常数)
==>y'=e^x*e^y
==>e^(-y)dy=e^xdx
==>e^(-y)=c-e^x
(c是积分常数)
==>y=-ln|c-e^x|
∴原微分方程的通解是
y=-ln|c-e^x|
(c是积分常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询