高等数学求解,方程的通解为?
展开全部
设P(x,y)=y-1,Q(x,y)=e^y-1,因此Py-Qx=1-1=0,因此存在势函数u(x,y),使得P(x,y)=ux,Q(x,y)=uy。又因为根据多元函数微分形式的不变性,(y-1)dx+(e^y+x)dy=ydx+xdy-dx+d(e^y)=d(xy)-dx+d(e^y)=d(xy-x+e^y)=0,因此可以得到方程的通解为xy-x+e^y=C。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询