已知关于x的方程x^2+a|x|+a^2-9=0只有一个实数解,则实数a的值为
2个回答
展开全部
楼上的错了,你把-2√3代入看看,解得x=±√3
先解关于|x|的方程
结果无外乎3种情况:
①|x|<0,无解
②|x|>0,有两解
③|x|=0,x=0,只有一解。
∴x=0,
解得,a=±3
当a=-3时,
x²-3|x|=0
解得|x|=0或|x|=3,即x=0或3或-3,不满足
∴a=3
先解关于|x|的方程
结果无外乎3种情况:
①|x|<0,无解
②|x|>0,有两解
③|x|=0,x=0,只有一解。
∴x=0,
解得,a=±3
当a=-3时,
x²-3|x|=0
解得|x|=0或|x|=3,即x=0或3或-3,不满足
∴a=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主,以下是解答:
因为方程只有一个实数解。
所以:△=0
1、当x≥0时:x^2+ax+a^2-9=0
△=a^2-4*1*(a^2-9)
=a^2-4a^2+36
=-3a^2+36
所以:-3a^2+36=0
a^2-12=0
a=2√3或-2√3
因为x=(-b±√0)/2a=-a/2,且x>=0
所以-a/2>=0
a<=0
所以a=-2√3
2、当x<0时:x^2-ax+a^2-9=0
△=(-a)^2-4*1*(a^2-9)
=a^2-4a^2+36
=-3a^2+36
所以:-3a^2+36=0
a^2-12=0
a=2√3或-2√3
因为x=(-b±√0)/2a=a/2,且x<0
所以a/2<0
a<0
所以a=-2√3
综上可知:a=-2√3
呵呵,打得那么辛苦,望采纳……
因为方程只有一个实数解。
所以:△=0
1、当x≥0时:x^2+ax+a^2-9=0
△=a^2-4*1*(a^2-9)
=a^2-4a^2+36
=-3a^2+36
所以:-3a^2+36=0
a^2-12=0
a=2√3或-2√3
因为x=(-b±√0)/2a=-a/2,且x>=0
所以-a/2>=0
a<=0
所以a=-2√3
2、当x<0时:x^2-ax+a^2-9=0
△=(-a)^2-4*1*(a^2-9)
=a^2-4a^2+36
=-3a^2+36
所以:-3a^2+36=0
a^2-12=0
a=2√3或-2√3
因为x=(-b±√0)/2a=a/2,且x<0
所以a/2<0
a<0
所以a=-2√3
综上可知:a=-2√3
呵呵,打得那么辛苦,望采纳……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询