展开全部
我给提供2种方法吧,现在要去上班,晚上回来再补充,先占个位!
下班了...
一个方法和上面的朋友的方法相同(英雄所见略同啊)
方法一:用到一个结论:平行四边形对角线的平方和等于四条边的平方和(坐标法,向量法,余弦定理均可证明)
把平行四边形切去一半,剩下三角形和中线,由上面的结论可得,|AP|^2+|BP|^2=(4PO^2+AB^2)/2,其中o为坐标原点。故,要想所求平方和最小,只需PO最小(AB=2为已知)
显然OPC共线时PO最小,其中C为圆心。
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=(36+4)/2=20
方法二(和方法一殊途同归)
设P点坐标为(x,y),则|AP|^2+|BP|^2=(x+1)^2+y^2+(x-1)^2+y^2=2(x^2+y^2)+2=2PO^2+2
要想上式最小,只需PO最小,显然OPC共线时PO最小,其中C为圆心。
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=20
下班了...
一个方法和上面的朋友的方法相同(英雄所见略同啊)
方法一:用到一个结论:平行四边形对角线的平方和等于四条边的平方和(坐标法,向量法,余弦定理均可证明)
把平行四边形切去一半,剩下三角形和中线,由上面的结论可得,|AP|^2+|BP|^2=(4PO^2+AB^2)/2,其中o为坐标原点。故,要想所求平方和最小,只需PO最小(AB=2为已知)
显然OPC共线时PO最小,其中C为圆心。
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=(36+4)/2=20
方法二(和方法一殊途同归)
设P点坐标为(x,y),则|AP|^2+|BP|^2=(x+1)^2+y^2+(x-1)^2+y^2=2(x^2+y^2)+2=2PO^2+2
要想上式最小,只需PO最小,显然OPC共线时PO最小,其中C为圆心。
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=20
展开全部
本题要用一个结论:平行四边形对角线的平方和等于四条边的平方和(用余弦定理可证)
|AP|^2+|BP|^2=1/2(4PO^2+AB^2)
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=1/2(36+4)=20
|AP|^2+|BP|^2=1/2(4PO^2+AB^2)
PO的最小值=|OC|-2=3
故|AP|^2+|BP|^2的最小值=1/2(36+4)=20
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
P点用sin和cos来设,这样就一个参数角
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询