属于正规矩阵,只有对称矩阵,反对称矩阵和正交矩阵满足矩阵的转置乘以矩阵等于矩阵乘以矩阵的转置。
转换矩阵和原始矩阵的乘积是一个正方形矩阵,它的顺序是原始矩阵Amxn的列的个数。原始矩阵和过渡矩阵的乘积是一个正方形矩阵,其顺序是原始矩阵的行数m。这两个矩阵不完全相同,也不相等。
如果矩阵是方矩阵:
(1)对称矩阵的变换矩阵(变换矩阵=原始矩阵)通过乘以原始矩阵来满足交换法则。
(2)反对称矩阵的转置矩阵(转置矩阵=原始矩阵的负基矩阵)通过原矩阵的乘法满足交换。
(3)正交矩阵的变换矩阵(逆矩阵=转置矩阵)通过乘以原始矩阵来满足交换法则。