一元三次方程韦达定理是什么?
展开全部
一元三次方程韦达定理是:
设三次方程为ax^3+bx^2+cx+d=0
三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0
即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0
对比原方程ax^3+bx^2+cx+d=0 可知
x1+x2+x3=-b/a
x1*x2+x2*x3+x3*x1=c/a
x1*x2*x3=-d/a
实数根:
虽然三个根都是实数根,但是求解过程中却遇到了虚数。虚数经过运算后,最终结果为实数。这个三次方程的根比较简单,求解过程中遇到的三次重根式可以化简。
但是,绝大多数三次方程的根都是无理数,其三次重根式无法化简,那么这时就必须要用虚数才能用根号精确表示这些复杂的无理实根,即:用带虚数的根式来表示一个实数。
由此可见,三次方程的根比二次方程的根的复杂度要高出很多。二次方程的根仅仅用单层二次根号就能精确表示出来,而三次方程的根不仅需要用到二、三次双重根号,有时甚至还需要用到虚数才能精确表示。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询