可微可导连续之间的关系是?

 我来答
帐号已注销
2021-04-11 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

可微=>可导=>连续=>可积

可导与连续的关系:可导必连续,连续不一定可导;

可微与连续的关系:可微与可导是一样的;

可积与连续的关系:可积不一定连续,连续必定可积;

可导与可积的关系:可导一般可积,可积推不出一定可导;

扩展资料:

对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导陵灶世数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如辩橘果一个函数在x0处可导,那么它一定在x0处是连续函数

参考资料来源:百度百科-可尺肢微

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式