三角代换公式是什么?
sin(-α)= -sinα;
cos(-α) = cosα;
sin(π/2-α)= cosα;
cos(π/2-α) =sinα;
sin(π/2+α) = cosα;
cos(π/2+α)= -sinα;
sin(π-α) =sinα;
cos(π-α) = -cosα;
sin(π+α)= -sinα;
cos(π+α) =-cosα;
tanA= sinA/cosA;
tan(π/2+α)=-cotα;
tan(π/2-α)=cotα;
tan(π-α)=-tanα;
tan(π+α)=tanα
扩展资料:
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值。
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
记忆方法二:无论α是多大的角,都将α看成锐角。
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二。
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
2020-06-15 广告